Description

Elixir / Erlang use their own solutions to create clusters that work together. Kubernetes provide its own orchestration. Due to the nature of the BEAM, it looks a very promising technology for applications that run in Kubernetes and requite to be always on, specifically if they are created as web pages using Phoenix.

Goals

  • Investigate and provide solutions that work in Phoenix LiveView using Kubernetes resources, so a multi-pod application can be used
  • Provide an end to end example that creates and deploy a container from source code.

Resources

https://github.com/dwyl/phoenix-liveview-counter-tutorial https://github.com/propedeutica/elixir-k8s-counter

Looking for hackers with the skills:

elixir elixir-lang kubernetes

This project is part of:

Hack Week 24

Activity

  • about 12 hours ago: socon added keyword "elixir" to this project.
  • about 12 hours ago: socon added keyword "elixir-lang" to this project.
  • about 12 hours ago: socon added keyword "kubernetes" to this project.
  • about 12 hours ago: socon originated this project.

  • Comments

    • socon
      about 12 hours ago by socon | Reply

      Solution uploaded in the github code. https://github.com/propedeutica/elixir-k8s-counter Article published with the result: https://medium.com/@chargio/how-to-easily-run-your-elixir-application-in-a-local-kubernetes-using-docker-desktop-f0c1ccfd49e6

    Similar Projects

    Learn how to integrate Elixir and Phoenix Liveview with LLMs by ninopaparo

    Description

    Learn how to integrate Elixir and Phoenix Liveview with LLMs by building an application that can provide answers to user queries based on a corpus of custom-trained data.

    Goals

    Develop an Elixir application via the Phoenix framework that:

    • Employs Retrieval Augmented Generation (RAG) techniques
    • Supports the integration and utilization of various Large Language Models (LLMs).
    • Is designed with extensibility and adaptability in mind to accommodate future enhancements and modifications.

    Resources

    • https://elixir-lang.org/
    • https://www.phoenixframework.org/
    • https://github.com/elixir-nx/bumblebee
    • https://ollama.com/


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Small healthcheck tool for Longhorn by mbrookhuis

    Project Description

    We have often problems (e.g. pods not starting) that are related to PVCs not running, cluster (nodes) not all up or deployments not running or completely running. This all prevents administration activities. Having something that can regular be run to validate the status of the cluster would be helpful, and not as of today do a lot of manual tasks.

    As addition (read enough time), we could add changing reservation, adding new disks, etc. --> This didn't made it. But the scripts can easily be adopted.

    This tool would decrease troubleshooting time, giving admins rights to the rancher GUI and could be used in automation.

    Goal for this Hackweek

    At the end we should have a small python tool that is doing a (very) basic health check on nodes, deployments and PVCs. First attempt was to make it in golang, but that was taking to much time.

    Overview

    This tool will run a simple healthcheck on a kubernetes cluster. It will perform the following actions:

    • node check: This will check all nodes, and display the status and the k3s version. If the status of the nodes is not "Ready" (this should be only reported), the cluster will be reported as having problems

    • deployment check: This check will list all deployments, and display the number of expected replicas and the used replica. If there are unused replicas this will be displayed. The cluster will be reported as having problems.

    • pvc check: This check will list of all pvc's, and display the status and the robustness. If the robustness is not "Healthy", the cluster will be reported as having problems.

    If there is a problem registered in the checks, there will be a warning that the cluster is not healthy and the program will exit with 1.

    The script has 1 mandatory parameter and that is the kubeconf of the cluster or of a node off the cluster.

    The code is writen for Python 3.11, but will also work on 3.6 (the default with SLES15.x). There is a venv present that will contain all needed packages. Also, the script can be run on the cluster itself or any other linux server.

    Installation

    To install this project, perform the following steps:

    • Create the directory /opt/k8s-check

    mkdir /opt/k8s-check

    • Copy all the file to this directory and make the following changes:

    chmod +x k8s-check.py


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Setup Kanidm as OIDC provider on Kubernetes by jkuzilek

    Description

    I am planning to upgrade my homelab Kubernetes cluster to the next level and need an OIDC provider for my services, including K8s itself.

    Goals

    • Successfully configure and deploy Kanidm on homelab cluster
    • Integrate with K8s auth
    • Integrate with other services (Envoy Gateway, Container Registry, future deployment of Forgejo?)

    Resources


    Learn enough Golang and hack on CoreDNS by jkuzilek

    Description

    I'm implementing a split-horizon DNS for my home Kubernetes cluster to be able to access my internal (and external) services over the local network through public domains. I managed to make a PoC with the k8s_gateway plugin for CoreDNS. However, I soon found out it responds with IPs for all Gateways assigned to HTTPRoutes, publishing public IPs as well as the internal Loadbalancer ones.

    To remedy this issue, a simple filtering mechanism has to be implemented.

    Goals

    • Learn an acceptable amount of Golang
    • Implement GatewayClass (and IngressClass) filtering for k8s_gateway
    • Deploy on homelab cluster
    • Profit?

    Resources

    EDIT: Feature mostly complete. An unfinished PR lies here. Successfully tested working on homelab cluster.