The GPD Win is a Nintendo 3DS XL sized PC featuring a keyboard and gaming controls. Having openSUSE working on it would be great, unfortunately Tumbleweed doesn't work at all on it and Leap 42.2 is lacking many important features.

A GPD Win runnning Leap 42.2

Let's gather around this machine and make it fully work!

Looking for hackers with the skills:

kernel hardware

This project is part of:

Hack Week 15

Activity

  • almost 7 years ago: DavidHamner joined this project.
  • almost 8 years ago: tiwai joined this project.
  • almost 8 years ago: vliaskovitis liked this project.
  • almost 8 years ago: pgonin liked this project.
  • almost 8 years ago: aplazas started this project.
  • almost 8 years ago: aplazas added keyword "kernel" to this project.
  • almost 8 years ago: aplazas added keyword "hardware" to this project.
  • almost 8 years ago: aplazas originated this project.

  • Comments

    • DavidHamner
      almost 7 years ago by DavidHamner | Reply

      Do we have a RPMs yet for the modded Kernel? http://hansdegoede.livejournal.com/17445.html

    • DavidHamner
      almost 7 years ago by DavidHamner | Reply

      I'll test with: https://universe2.us/subrepo/fedora/27/x86_64/base/ (Once my GPD gets here)

    • DavidHamner
      almost 7 years ago by DavidHamner | Reply

      TW works well at this point: https://www.youtube.com/watch?v=U1bTlEtxjhE

    Similar Projects

    Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho

    Creator:
    Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
    Members:
    Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team

    Description

    Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.

    Goals

    Primary

    Start phasing out/deprecation of older SMB versions

    Secondary

    • Clean up of the code (with focus on the newer versions)
    • Update cifs-utils
    • Update documentation
    • Improve backport workflow (see below)

    Technical details

    Ideas for the implementation.

    • fs/smb/client/{old,new}.c to generate the respective modules
      • Maybe don't create separate folders? (re-evaluate as things progresses!)
    • Remove server->{ops,vals} if possible
    • Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
    • Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
    • Restructure multichannel
      • Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
      • Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
    • Authentication mechanisms
      • Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video:


    Contributing to Linux Kernel security by pperego

    Description

    A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.

    I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.

    I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller

    Goals

    1. Fix at least 2 security bugs
    2. Create the fuzzing lab and having it running

    The story so far

    • Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
    • Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
    • Day 3: Working on trivial changes after I read this blog post: https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence with the patch preparation and submit process yet.
      • First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
      • Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
    • Day 4: Triaging more issues found by Coverity.
      • The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
      • Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
    • Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
    • Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.

      I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.

    The patches

    1


    Capyboard, ESP32 Development Board for Education by emiler

    Description

    Capyboard 3D

    Capyboard is an ESP32 development board built to accept individual custom-made modules. The board is created primarily for use in education, where you want to focus on embedded programming instead of spending time with connecting cables and parts on a breadboard, as you would with Arduino and other such devices. The board is not limited only to education and it can be used to build, for instance, a very powerful internal meteo-station and so on.

    I already have one initial prototype ready and tested. The next iteration addresses several issues the first prototype had. I am planning on finishing up the mainboard and one of the modules this week.

    This project is also a part of my master's thesis.

    Goals

    • Finish testing of a new prototype
    • Publish source files
    • Documentation completion
    • Finish writing thesis

    Resources


    Framework laptop integration by nkrapp

    Project Description

    Although openSUSE does run on the Framework laptops out-of-the-box, there is still room to improve the experience. The ultimate goal is to get openSUSE on the list of community supported distros

    Goal for this Hackweek

    The goal this year is to at least package all of the soft- and firmware for accessories like the embedded controller, Framework 16 inputmodule and other tools. I already made some progress by packaging the inputmodule control software, but the firmware is still missing

    Resources

    As I only have a Framework laptop 16 and not a 13 I'm looking for people with hardware that can help me test

    Progress:

    Update 1:

    The project lives under my home for now until I can get an independent project on OBS: Framework Laptop project

    Also, the first package is already done, it's the cli for the led-matrix spacer module on the Framework Laptop 16. I am also testing this myself, but any feedback or questions are welcome.

    You can test the package on the Framework 16 by adding this repo and installing the package inputmodule-control

    Update 2:

    I finished packaging the python cli/gui for the inputmodule. It is using a bit of a hack because one of the dependencies (PySimpleGUI) recently switched to a noncommercial license so I cannot ship it. But now you can actually play the games on the led-matrix (the rust package doesn't include controls for the games). I'm also working on the Framework system tools now, which should be more interesting for Framework 13 users.

    You can test the package on the Framework 16 by installing python311-framework16_inputmodule and then running "ledmatrixctl" from the command line.

    Update 3:

    I packaged the framework_tool, a general application for interacting with the system. You can find it some detailed information what it can do here. On my system everything related to the embedded controller functionality doesn't work though, so some help testing and debugging would be appreciated.

    Update 4:

    Today I finished the qmk interface, which gives you a cli (and gui) to configure your Framework 16 keyboard. Sadly the Python gui is broken upstream, but I added the qmk_hid package with the cli and from my testing it works well.

    Final Update:

    All the interesting programs are now done, I decided to exclude the firmware for now since upstream also recommends using fwupd to update it. I will hack on more things related to the Framework Laptops in the future so if there are any ideas to improve the experience (or any bugs to report) feel free to message me about it.

    As a final summary/help for everyone using a Framework Laptop who wants to use this software:

    The source code for all packages can be found in repositories in the Framework organization on Github

    All software can be installed from this repo (Tumbleweed)

    The available packages are:

    • framework-inputmodule-control (FW16) - play with the inputmodules on your Framework 16 (b1-display, led-matrix, c1-minimal)

    • python-framework16_inputmodule (FW16) - same as inputmodule-control but is needed if you want to play and crontrol the built-in games in the led-matrix (call with ledmatrixctl or ledmatrixgui)

    • framework_tool (FW13 and FW 16) - use to see and configure general things on your framework system. Commands using the embedded controller might not work, it looks like there are some problems with the kernel module used by the EC. Fixing this is out of scope for this hackweek but I am working on it

    • qmk_hid (FW16) - a cli to configure the FW16 qmk keyboard. Sadly the gui for this is broken upstream so only the cli is usable for now


    Build a split keyboard from scratch by mpagot

    Description

    I'm getting older... this summer I experienced an annoying and persistent tingling in one hand and arm. That was the initial motivation to get more interested in ergonomic work gadgets, and from that to split keyboards. And that was the entrance in a rabbit hole.

    Which keyboard I like to create:

    • Split keyboard for ergonomic (I'm not primary interested in having it portable)
    • I have big hands: I like it to fit as much as possible my hands measures
    • Columnar stagger keys position
    • Not too few keys (at the moment I'm at 24 + 24)
    • One row thumb cluster
    • No wireless, not to have batteries and for security reason
    • CherryMX, or generally speaking no low profile/corne choc
    • Hot swap Socket switches

    Goals

    • Create PCB design for a split keyboard
    • Get it produced
    • Mount it
    • Evaluate FWs

    Resources

    Progress

    Day1

    Get the existing Ergogen project working on my TW machine Get Kicad as flatpack Go back to the https://flatfootfox.com/ergogen-part3-pcbs/ Join the #ergogen Discord channel and ask for help about the nets

    Day2

    Redesign the keyboard matrix on Inkscape Implement it in the Ergogen YAML format Create a Kicad PCB file Start routing it Iterate over the matrix arrangement to try to implement it like 2 layer board and ideally with not vias Get some Kicad tutorials

    Day3

    Get my hand dirty building a 2x2 key matrix --> welcome to nne Look at ZKM and how to configure it --> https://github.com/michelepagot/zmk-config-nne Get the FW built by github, try to flash it: get matrix scan pulse but no keys to the PC Get in contact with ceoloide, an Ergogen maintainer, about net issue.


    SUSE Prague claw machine by anstalker

    Project Description

    The idea is to build a claw machine similar to e.g. this one:

    example image

    Why? Well, it could be a lot of fun!

    But also it's a great way to dispense SUSE and openSUSE merch like little Geekos at events like conferences, career fairs and open house events.

    Goal for this Hackweek

    Build an arcade claw machine.

    Resources

    In French, an article about why you always lose in claw machine games:

    We're looking for handy/crafty people in the Prague office:

    • woodworking XP or equipment
    • arduino/raspi embedded programming knowledge
    • Anthony can find a budget for going to GM and buying servos and such ;)