Look once again on Xperia Tablet Z and try to have there openSUSE running natively as alternative operating system.
I'm able to work on that only during my vacations or hackweeks so there is still a lot of work to do. Previous history can be found here and here.
What to do now:
- improve framebuffer experience before running X
- find better driver for X than the one used now
- check current status of upstream (either cyanogenmod and vanilla) - DRM video driver, Mali driver, ...
- create dracut module specific for Xperia Tablet Z HW initialization
- create RPM package with kernel
This project is part of:
Hack Week 11
Activity
Comments
Similar Projects
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel
Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.
Result
In the end I concentrated again to msm8994:
- 507aae9a3549c ("arm64: dts: qcom: msm8994-angler: Enable power key, volume up/down") (will be in kernel 6.14)
- Testing of c910544d22347 ("arm64: dts: qcom: msm8994: Describe USB interrupts") (will be in kernel 6.14)
- WIP USB support for msm8994
Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho
Creator:
Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
Members:
Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team
Description
Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.
Goals
Primary
Start phasing out/deprecation of older SMB versions
Secondary
- Clean up of the code (with focus on the newer versions)
- Update cifs-utils
- Update documentation
- Improve backport workflow (see below)
Technical details
Ideas for the implementation.
- fs/smb/client/{old,new}.c to generate the respective modules
- Maybe don't create separate folders? (re-evaluate as things progresses!)
- Remove server->{ops,vals} if possible
- Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
- Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
- Restructure multichannel
- Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
- Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
- Authentication mechanisms
- Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
The story so far
- Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
- Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
- Day 3: Working on trivial changes after I read this blog post:
https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence
with the patch preparation and submit process yet.
- First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
- Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
- Day 4: Triaging more issues found by Coverity.
- The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
- Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
- Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.
I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.
The patches
Create DRM drivers for VESA and EFI framebuffers by tdz
Description
We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.
Goals
- Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
- Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.
A CLI for Harvester by mohamed.belgaied
[comment]: # Harvester does not officially come with a CLI tool, the user is supposed to interact with Harvester mostly through the UI [comment]: # Though it is theoretically possible to use kubectl to interact with Harvester, the manipulation of Kubevirt YAML objects is absolutely not user friendly. [comment]: # Inspired by tools like multipass from Canonical to easily and rapidly create one of multiple VMs, I began the development of Harvester CLI. Currently, it works but Harvester CLI needs some love to be up-to-date with Harvester v1.0.2 and needs some bug fixes and improvements as well.
Project Description
Harvester CLI is a command line interface tool written in Go, designed to simplify interfacing with a Harvester cluster as a user. It is especially useful for testing purposes as you can easily and rapidly create VMs in Harvester by providing a simple command such as:
harvester vm create my-vm --count 5
to create 5 VMs named my-vm-01
to my-vm-05
.
Harvester CLI is functional but needs a number of improvements: up-to-date functionality with Harvester v1.0.2 (some minor issues right now), modifying the default behaviour to create an opensuse VM instead of an ubuntu VM, solve some bugs, etc.
Github Repo for Harvester CLI: https://github.com/belgaied2/harvester-cli
Done in previous Hackweeks
- Create a Github actions pipeline to automatically integrate Harvester CLI to Homebrew repositories: DONE
- Automatically package Harvester CLI for OpenSUSE / Redhat RPMs or DEBs: DONE
Goal for this Hackweek
The goal for this Hackweek is to bring Harvester CLI up-to-speed with latest Harvester versions (v1.3.X and v1.4.X), and improve the code quality as well as implement some simple features and bug fixes.
Some nice additions might be: * Improve handling of namespaced objects * Add features, such as network management or Load Balancer creation ? * Add more unit tests and, why not, e2e tests * Improve CI * Improve the overall code quality * Test the program and create issues for it
Issue list is here: https://github.com/belgaied2/harvester-cli/issues
Resources
The project is written in Go, and using client-go
the Kubernetes Go Client libraries to communicate with the Harvester API (which is Kubernetes in fact).
Welcome contributions are:
- Testing it and creating issues
- Documentation
- Go code improvement
What you might learn
Harvester CLI might be interesting to you if you want to learn more about:
- GitHub Actions
- Harvester as a SUSE Product
- Go programming language
- Kubernetes API
Switch software-o-o to parse repomd data by hennevogel
Currently software.opensuse.org search is using the OBS binary search for everything, even for packages inside the openSUSE distributions. Let's switch this to use repomd data from download.opensuse.org
New openSUSE-welcome by lkocman
Project Description
Let's revisit our existing openSUSE welcome app.
My goal was to show Leap 16 in a new coat. Welcome app adds to the first time use experience. We've recently added donation button to our existing welcome.
Some things that I recently wanted to address were EOL and possibly upgrade notification.
I've already done some experiments with mint welcome app, but not sure if it's better than the existing one.
There is also a PR to rework existing app https://github.com/openSUSE/openSUSE-welcome/pull/36 (this should be considered as an option too)
Goal for this Hackweek
New welcome app, possibly with EOL notification for Leap.
1) Welcome application(s) with (rebrand changes) maintained under github.com/openSUSE
2) Application is submitted to openSUSE:Factory && openSUSE:Leap:16.0
3) Updated needles in openQA (probably post hackweek)
Resources
Reddit discussion about the best welcome app out there.
Github repo for the current welcome app.
Create DRM drivers for VESA and EFI framebuffers by tdz
Description
We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.
Goals
- Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
- Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.
Create a DRM driver for VGA video cards by tdz
Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.
VGA has a number of limitations, which make this project interesting.
- There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
- Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
- VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.
The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.
Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA
Finish gfxprim application multiplexor (window manager) by metan
Project Description
I've implemented drivers for a few e-ink displays during the last hackweek and made sure that gfxprim widgets run nicely on e-ink as well. The missing piece to have a portable e-ink computer/reader/music player/... is a application that can switch between currently running applications and that can start new applications as well. Half of the solution is ready, there is a proxy gfxprim backend where applications render into a piece of a shared memory and input events (e.g. keyboard, mouse) can be multiplexed. What is missing is an interface (possibly touchscreen friendly as well) to make it user friendly.
Goal for this Hackweek
Make nekowm usable "window manager".
Resources