Description

Start experimenting the generative SUSE-AI chat bot, asking questions on different areas of knowledge or science and possibly analyze the quality of the LLM model response, specific and comparative, checking the answers provided by different LLM models to a same query, using proper quality metrics or tools or methodologies.

Try to define basic guidelines and requirements for quality test automation of AI-generated responses.

First approach of investigation can be based on manual testing: methodologies, findings and data can be useful then to organize valid automated testing.

Goals

  • Identify criteria and measuring scales for assessment of a text content.
  • Define quality of an answer/text based on defined criteria .
  • Identify some knowledge sectors and a proper list of problems/questions per sector.
  • Manually run query session and apply evaluation criteria to answers.
  • Draft requirements for test automation of AI answers.

Resources

  • Announcement of SUSE-AI for Hack Week in Slack
  • Openplatform and related 3 LLM models gemma:2b, llama3.1:8b, qwen2.5-coder:3b.

Notes

  • Foundation models (FMs):
    are large deep learning neural networks, trained on massive datasets, that have changed the way data scientists approach machine learning (ML). Rather than develop artificial intelligence (AI) from scratch, data scientists use a foundation model as a starting point to develop ML models that power new applications more quickly and cost-effectively.

  • Large language models (LLMs):
    are a category of foundation models pre-trained on immense amounts of data acquiring abilities by learning statistical relationships from vast amounts of text during a self- and semi-supervised training process, making them capable of understanding and generating natural language and other types of content , to perform a wide range of tasks.
    LLMs can be used for generative AI (artificial intelligence) to produce content based on input prompts in human language.

Validation of a AI-generated answer is not an easy task to perform, as manually as automated.
An LLM answer text shall contain a given level of informations: correcness, completeness, reasoning description etc.
We shall rely in properly applicable and measurable criteria of validation to get an assessment in a limited amount of time and resources.

Looking for hackers with the skills:

ai llm

This project is part of:

Hack Week 24

Activity

  • about 1 year ago: mdati added keyword "llm" to this project.
  • about 1 year ago: mdati added keyword "ai" to this project.
  • about 1 year ago: mdati liked this project.
  • about 1 year ago: mdati started this project.
  • about 1 year ago: mdati originated this project.

  • Comments

    • livdywan
      about 1 year ago by livdywan | Reply

      You might want to add an ai tag

    Similar Projects

    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


    Try out Neovim Plugins supporting AI Providers by enavarro_suse

    Description

    Experiment with several Neovim plugins that integrate AI model providers such as Gemini and Ollama.

    Goals

    Evaluate how these plugins enhance the development workflow, how they differ in capabilities, and how smoothly they integrate into Neovim for day-to-day coding tasks.

    Resources


    issuefs: FUSE filesystem representing issues (e.g. JIRA) for the use with AI agents code-assistants by llansky3

    Description

    Creating a FUSE filesystem (issuefs) that mounts issues from various ticketing systems (Github, Jira, Bugzilla, Redmine) as files to your local file system.

    And why this is good idea?

    • User can use favorite command line tools to view and search the tickets from various sources
    • User can use AI agents capabilities from your favorite IDE or cli to ask question about the issues, project or functionality while providing relevant tickets as context without extra work.
    • User can use it during development of the new features when you let the AI agent to jump start the solution. The issuefs will give the AI agent the context (AI agents just read few more files) about the bug or requested features. No need for copying and pasting issues to user prompt or by using extra MCP tools to access the issues. These you can still do but this approach is on purpose different.

    Goals

    1. Add Github issue support
    2. Proof the concept/approach by apply the approach on itself using Github issues for tracking and development of new features
    3. Add support for Bugzilla and Redmine using this approach in the process of doing it. Record a video of it.
    4. Clean-up and test the implementation and create some documentation
    5. Create a blog post about this approach

    Resources

    There is a prototype implementation here. This currently sort of works with JIRA only.


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.

    Timeline

    Day 1 (of 4)

    • Tried out a RAG demo, expanded on feeding it my own data
    • Experimented with qwen3-coder to add a persistent chat functionality, and keeping vectors in a pickle file
    • Optimizations to keep everything within context window
    • Learn and add a bit of PyTest

    Day 2

    • More experimenting and more data
    • Study ChromaDB
    • Add a Web UI that works from another computer even though the container sees network is down

    Day 3

    • The above RAG is working well enough for demonstration purposes.
    • Pivot to trying out OpenCode, configuring local Ollama qwen3-coder there, to analyze the RAG demo.
    • Figured out how to configure Ollama template to be usable under OpenCode. OpenCode locally is super slow to just running qwen3-coder alone.

    Day 4 (final day)

    • Battle with OpenCode that was both slow and kept on piling up broken things.
    • Call it success as after all the agentic AI was working locally.
    • Clean up the mess left behind a bit.

    Blog Post

    Summarized the findings at blog post.


    Explore LLM evaluation metrics by thbertoldi

    Description

    Learn the best practices for evaluating LLM performance with an open-source framework such as DeepEval.

    Goals

    Curate the knowledge learned during practice and present it to colleagues.

    -> Maybe publish a blog post on SUSE's blog?

    Resources

    https://deepeval.com

    https://docs.pactflow.io/docs/bi-directional-contract-testing


    Bugzilla goes AI - Phase 1 by nwalter

    Description

    This project, Bugzilla goes AI, aims to boost developer productivity by creating an autonomous AI bug agent during Hackweek. The primary goal is to reduce the time employees spend triaging bugs by integrating Ollama to summarize issues, recommend next steps, and push focused daily reports to a Web Interface.

    Goals

    To reduce employee time spent on Bugzilla by implementing an AI tool that triages and summarizes bug reports, providing actionable recommendations to the team via Web Interface.

    Project Charter

    Bugzilla goes AI Phase 1

    Description

    Project Achievements during Hackweek

    In this file you can read about what we achieved during Hackweek.

    Project Achievements