Project Description
FizzBuzz OS (or just fbos
) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).
This kernel provides just one system call, write
, which allows any program to pass the string to be written into stdout.
This project is free software and you can find it here.
Goal for this Hackweek
- Better understand the RISC-V SBI interface.
- Better understand RISC-V in privileged mode.
- Have fun.
Resources
Results
The project was a resounding success Lots of learning, and the initial target was met.
This project is part of:
Hack Week 24
Activity
Comments
Be the first to comment!
Similar Projects
Symbol Relations by hli
Description
There are tools to build function call graphs based on parsing source code, for example, cscope
.
This project aims to achieve a similar goal by directly parsing the disasembly (i.e. objdump) of a compiled binary. The assembly code is what the CPU sees, therefore more "direct". This may be useful in certain scenarios, such as gdb/crash debugging.
Detailed description and Demos can be found in the README file:
Supports x86 for now (because my customers only use x86 machines), but support for other architectures can be added easily.
Tested with python3.6
Goals
Any comments are welcome.
Resources
https://github.com/lhb-cafe/SymbolRelations
symrellib.py: mplements the symbol relation graph and the disassembly parser
symrel_tracer*.py: implements tracing (-t option)
symrel.py: "cli parser"
Explore Microchip PIC64GX1000 Curiosity board (riscv64) by a_faerber
Description
The Microchip PIC64 family of RISC-V chipsets was announced this summer, with PIC64GX as first subfamily (with SiFive U54 CPU cores, same as Microchip PolarFire). Later families (PIC64-HPSC and PIC64HX) were announced to feature the long-awaited RISC-V Hypervisor Extension.
My pre-ordered PIC64GX1000 Curiosity board arrived the week before Hackweek 24.
Goals
I intend to investigate enabling openSUSE Tumbleweed riscv64 on this new chipset and board.
Resources
Progress
- Created udev rules for Curiosity board's FTDI based debug UARTs on USB-C - UART B has output from HSS / OpenSBI, UART C has output from U-Boot and kernel
- Modified the image https://download.opensuse.org/ports/riscv/tumbleweed/images/openSUSE-Tumbleweed-RISC-V-JeOS-efi.riscv64-2024.11.10-Build1.13.raw.xz (20241118) with gdisk to prepend a bootloader partition (copying the binary bootloader from the vendor-supplied microSD, ignoring excess partition size) and added the microchip/pic64gx-curiosity-kit.dtb file to the EFI System Partition (again from the vendor-supplied microSD)
- This boots into Tumbleweed! with ttyS1 by default (UART C)
Stretch goals
Investigate also the Microchip PolarFire SoC Discovery board.
Progress
The Microchip PolarFire Icicle board and BeagleV-Fire board had previously already been enabled by Torsten Duwe.
- Additional udev rules needed to be created for its FTDI UART bridge chip.
- The board ships with a "FIR filter" demo pre-flashed, not exposing any bootloader, only some demo output on UART C. The board will need to be flashed with a Microchip reference design for Linux.
- The board has an on-board Flash Pro Express JTAG debugger on USB-C. Proprietary Programming and Debug tools software is available from Microchip to download, requiring an account. This should then be able to flash the .job file.
- An in-progress patchset for OpenOCD is available in Gerrit, not yet in the openSUSE package. Presumably OpenOCD would not support Microchip's .job file format.
Investigate Milk-V Jupiter board (riscv64) by a_faerber
Description
On Monday of Hackweek 24 we received two Milk-V Jupiter mini-ITX boards (JUPITER_V1.1) via the RISC-V International devboards program. The Jupiter board uses a Spacemit M1 System-on-Chip (SoC).
The Banana Pi BPI-F3 board with related Spacemit K1 SoC had previously already been investigated by Marvin Friedrich.
Goals
Investigate the hardware, any shipping boot firmware and its ability to boot openSUSE Tumbleweed.
Resources
Progress
- On Monday Andreas purchased an ATX power supply, to power up the board.
- According to UART output (note there's two UART pinouts on the board), there appears to be an undocumented U-Boot bootloader in QSPI, in addition to the documented microSD, NVMe and eMMC boot methods.
- The on-board bootloader does not seem to support USB ("No working controllers found").
- Manually loading our GRUB from microSD (via load+bootefi commands from SPI-based U-Boot) works, but in GRUB loading our kernel fails ("error: ../../grub-core/loader/efi/linux.c:521:out of memory.").
- Marvin instead had success flashing a ready-made Bianbu OS image via titantools to microSD card (i.e., a different U-Boot on microSD), that he then modified to load openSUSE kernels instead.
Tumbleweed on Mars-CM (RISC-V board) by ph03nix
RISC-V is awesome, Tumbleweed is awesome, chocolate cake is awesome. I'm planning to combine all of them in one project.
Project Description
I recently purchased a MILK-V Mars CM and managed to setup it up already using Debian Linux. My project for this Hackweek is to see how far I can get to run Tumbleweed on this compute module board.
Goal for this Hackweek
- Run Tumbleweed on the Compute Module
Resources
- http://milkv.io/mars-cm
- https://en.opensuse.org/HCL:VisionFive2
Create openSUSE images for Arm/RISC-V boards by avicenzi
Project Description
Create openSUSE images (or test generic EFI images) for Arm and/or RISC-V boards that are not yet supported.
Goal for this Hackweek
Create bootable images of Tumbleweed for SBCs that currently have no images available or are untested.
Consider generic EFI images where possible, as some boards can hold a bootloader.
Document in the openSUSE Wiki how to flash and use the image for a given board.
Boards that I have around and there are no images:
- Rock 3B
- Nano PC T3 Plus
- Lichee RV D1
- StartFive VisionFive (has some image needs testing)
Hack Week 22
Hack Week 21
Resources
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
FastFileCheck work by pstivanin
Description
FastFileCheck is a high-performance, multithreaded file integrity checker for Linux. Designed for speed and efficiency, it utilizes parallel processing and a lightweight database to quickly hash and verify large volumes of files, ensuring their integrity over time.
https://github.com/paolostivanin/FastFileCheck
Goals
- Release v1.0.0
Design overwiew:
- Main thread (producer): traverses directories and feeds the queue (one thread is more than enough for most use cases)
- Dedicated consumer thread: manages queue and distributes work to threadpool
- Worker threads: compute hashes in parallel
This separation of concerns is efficient because:
- Directory traversal is I/O bound and works well in a single thread
- Queue management is centralized, preventing race conditions
- Hash computation is CPU-intensive and properly parallelized
Add a machine-readable output to dmidecode by jdelvare
Description
There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.
Goals
Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.
ESETv2 Emulator / interpreter by m.crivellari
Description
ESETv2 is an intriguing challenge developed by ESET, available on their website under the "Challenge" menu.
The challenge involves an "assembly-like" language and a Python compiler that generates .evm
binary files.
This is an example using one of their samples (it prints N Fibonacci numbers):
.dataSize 0
.code
loadConst 0, r1 # first
loadConst 1, r2 # second
loadConst 1, r14 # loop helper
consoleRead r3
loop:
jumpEqual end, r3, r15
add r1, r2, r4
mov r2, r1
mov r4, r2
consoleWrite r1
sub r3, r14, r3
jump loop
end:
hlt
This language also supports multi-threading. It includes instructions such as createThread
to start a new thread, joinThread
to wait until a thread completes, and lock
/unlock
to facilitate synchronization between threads.
Goals
- create a full interpreter able to run all the available samples provided by ESET.
- improve / optimize memory (eg. using bitfields where needed as well as avoid unnecessary memory allocations)
Resources
- Challenge URL: https://join.eset.com/en/challenges/core-software-engineer
- My github project: https://github.com/DispatchCode/eset_vm2 (not 100% complete)
Achivements
Project still not complete. Added lock / unlock instruction implementation but further debug is needed; there is a bug somewhere. Actually the code it works for almost all the examples in the samples folder. 1 of them is not yet runnable (due to a missing "write" opcode implementation), another will cause the bug to show up; still not investigated, anyhow.
Improve UML page fault handler by ptesarik
Description
Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.
Goals
Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.
Resources
Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
Create a DRM driver for VGA video cards by tdz
Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.
VGA has a number of limitations, which make this project interesting.
- There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
- Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
- VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.
The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.
Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA
Kill DMA and DMA32 memory zones by ptesarik
Description
Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.
Goals
Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).
Resources
- LPC2024 talk:
- video:
Officially Become a Kernel Hacker! by m.crivellari
Description
My studies as well my spare time are dedicated to the Linux Kernel. Currently I'm focusing on interrupts on x86_64, but my interests are not restricted to one specific topic, for now.
I also "played" a little bit with kernel modules (ie lantern, a toy packet analyzer) and I've added a new syscall in order read from a task A, the memory of a task B.
Maybe this will be a good chance to...
Goals
- create my first kernel patch
Resources
- https://www.kernel.org/doc/html/latest/process/submitting-patches.html
- https://git-send-email.io/ (mentioned also in the kernel doc)
- https://javiercarrascocruz.github.io/kernel-contributor-1
Achivements
- found while working on a bug, this is the 1st patch: cifs: avoid deadlocks while updating iface [✅ has been merged]