Project Description
When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.
Goal for the Hackweeks
- Investigate if this is possible and the implications it would have (done in HW21)
- Hack up a PoC (done in HW22 and HW23)
- Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).
update HW23
- I was able to include the crash kernel into the kernel Image.
- I'll need to find a way to load that from
init/main.c:start_kernel()
probably afterkcsan_init()
- I workaround for a smoke test was to hack
kexec_file_load()
systemcall which has two problems:- My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
- As the crash kernel is part of init.data it will be already stale once I can call
kexec_file_load()
from user-space.
The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.
update HW24
- Day1
- rebased on v6.12 with no problems others then me breaking the config
- setting up a new compilation and qemu/virtme env
- getting desperate as nothing works that used to work
- Day 2
- getting to call the invocation of loading the early kernel from
__init
afterkcsan_init()
- getting to call the invocation of loading the early kernel from
Day 3
- fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
- code refactoring
- I'm now able to load the crash kernel
- When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in
elfcorehdr_read_notes()
Day 4
- crash systems crashes (no pun intended) in
copy_old_mempage()
link; will need to understand elfcorehdr... - call path
vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
- crash systems crashes (no pun intended) in
Day 5
- hacking
arch/arm64/kernel/crash_dump.c:copy_old_mempage()
to see if crash system really starts. It does. - fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
- hacking
TODOs
- fix elfcorehdr so that we actually can make use of all this...
- test where in the boot
__init()
chain we can/should callkexec_early_dump()
- do we really need
memdup()
or can we used the complied kernel for creating the segments? - refactor and rename everything (Kconfig menu shows in wrong place, Kconfig entry needs to go somewhere else, ekdump vs early_dump vs early_kdump
Resources
This project is part of:
Hack Week 21 Hack Week 22 Hack Week 23 Hack Week 24
Activity
Comments
-
6 months ago by ptesarik | Reply
FWIW I was contemplating a similar scheme back in 2016. My idea was to load: 1. kdump kernel 2. kdump initrd 3. production kernel 4. production initrd Then boot into the kdump kernel, update memory maps and kexec to the production kernel. When the production kernel crashes, pass control back to the kdump kernel. For the return to the kdump kernel, I was looking at the
KEXEC_PRESERVE_CONTEXT
flag, but in the end I doubt it's really helpful without further modifications to the production kernel. At this point, it's probably easier to boot the production kernel first and set up an initial crash kernel at early boot.Good luck!
-
2 months ago by mbrugger | Reply
[ 0.221029] Unable to handle kernel level 3 address size fault at virtual address ffff800080aa0000
[ 0.222848] Mem abort info:
[ 0.223419] ESR = 0x0000000096000003
[ 0.224187] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.225300] SET = 0, FnV = 0
[ 0.225933] EA = 0, S1PTW = 0
[ 0.226587] FSC = 0x03: level 3 address size fault
[ 0.227600] Data abort info:
[ 0.228198] ISV = 0, ISS = 0x00000003, ISS2 = 0x00000000
[ 0.229351] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 0.230385] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 0.231466] swapper pgtable: 64k pages, 48-bit VAs, pgdp=000000005d6b0000
[ 0.232850] [ffff800080aa0000] pgd=100000005ef80003, p4d=100000005ef80003, pud=100000005ef80003, pmd=100000005ef90003, pte=00681591c0000f03
[ 0.235548] Internal error: Oops: 0000000096000003 [#1] PREEMPT SMP
[ 0.236828] Modules linked in:
[ 0.237504] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-dirty #9
[ 0.239037] Hardware name: linux,dummy-virt (DT)
[ 0.240047] pstate: a0400005 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.241563] pc : _memcpy+0x110/0x230
[ 0.242374] lr : _copytoiter+0x374/0x670
[ 0.243276] sp : ffff8000800efa20
[ 0.244009] x29: ffff8000800efa70 x28: 0000000000000000 x27: ffff800080aa0000
[ 0.245577] x26: ffff8000800efba0 x25: 00000000000001a8 x24: ffffd7d750365000
[ 0.247124] x23: ffff8000800efbb0 x22: 0000000000000000 x21: ffff8000800efba0
[ 0.248672] x20: 00000000000001a8 x19: 0000000000000000 x18: ffffffffffffffff
[ 0.250234] x17: 0000000087130253 x16: 00000000e547dfaa x15: 0720072007200720
[ 0.251792] x14: ffffa2fe3f221a00 x13: ffffd7d750365fb8 x12: ffffd7d75162c9c8
[ 0.253349] x11: ffffd7d75169ca30 x10: ffffd7d7516849f0 x9 : ffffd7d751684a48
[ 0.254900] x8 : 0000000000017fe8 x7 : c0000000ffffefff x6 : 0000000000000001
[ 0.256457] x5 : ffff22febfcc1ba8 x4 : ffff800080aa01a8 x3 : 00000000ffffefff
[ 0.258013] x2 : 00000000000001a8 x1 : ffff800080aa0000 x0 : ffff22febfcc1a00
[ 0.259564] Call trace:
[ 0.260109] _memcpy+0x110/0x230
[ 0.260842] copyoldmempage+0xc8/0x110
[ 0.261713] readfromoldmem+0x1bc/0x268
[ 0.262595] elfcorehdrreadnotes+0x9c/0xd0
[ 0.263536] mergenoteheaderself64.constprop.15+0x110/0x3b0
[ 0.264813] vmcoreinit+0x298/0x794
[ 0.265612] dooneinitcall+0x64/0x1e8
[ 0.266455] kernelinitfreeable+0x238/0x288
Similar Projects
Modernize ocfs2 by goldwynr
Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.
Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests
Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel
Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.
Result
In the end I concentrated again to msm8994:
- 507aae9a3549c ("arm64: dts: qcom: msm8994-angler: Enable power key, volume up/down") (will be in kernel 6.14)
- Testing of c910544d22347 ("arm64: dts: qcom: msm8994: Describe USB interrupts") (will be in kernel 6.14)
- WIP USB support for msm8994
RISC-V emulator in GLSL capable of running Linux by favogt
Description
There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.
I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.
Goals
Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.
Minimum:
riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.
Stretch goals:
FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).
Resources
RISC-V ISA Specifications
Shaderoo
OpenGL 4.5 Quick Reference Card
Result as of Hackweek 2024
WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.
As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.
Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!
The repo with a demo video is available at https://github.com/Vogtinator/risky-v
Contributing to Linux Kernel security by pperego
Description
A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.
I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.
I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller
Goals
- Fix at least 2 security bugs
- Create the fuzzing lab and having it running
The story so far
- Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
- Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
- Day 3: Working on trivial changes after I read this blog post:
https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence
with the patch preparation and submit process yet.
- First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
- Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
- Day 4: Triaging more issues found by Coverity.
- The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
- Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
- Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.
I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.
The patches
Hacking on sched_ext by flonnegren
Description
Sched_ext upstream has some interesting issues open for grabs:
Goals
Send patches to sched_ext upstream
Also set up perfetto to trace some of the example schedulers.
Resources
https://github.com/sched-ext/scx