The i2c-i801 kernel driver (for SMBus controller on most x86 Intel systems) has a lot of pending upstream patches from various contributors. There are bug fixes, clean-ups and new features. Without proper reviewing and merging work, most of the effort is likely to be lost.

So my project is to collect all contributions, review them, test as much as I can on the hardware I have, resolve all conflicts and submit a large single patch series upstream.

Looking for hackers with the skills:

i2c smbus kernel

This project is part of:

Hack Week 14

Activity

  • over 8 years ago: jdelvare started this project.
  • over 8 years ago: jdelvare added keyword "i2c" to this project.
  • over 8 years ago: jdelvare added keyword "smbus" to this project.
  • over 8 years ago: jdelvare added keyword "kernel" to this project.
  • over 8 years ago: jdelvare originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho

    Creator:
    Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
    Members:
    Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team

    Description

    Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.

    Goals

    Primary

    Start phasing out/deprecation of older SMB versions

    Secondary

    • Clean up of the code (with focus on the newer versions)
    • Update cifs-utils
    • Update documentation
    • Improve backport workflow (see below)

    Technical details

    Ideas for the implementation.

    • fs/smb/client/{old,new}.c to generate the respective modules
      • Maybe don't create separate folders? (re-evaluate as things progresses!)
    • Remove server->{ops,vals} if possible
    • Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
    • Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
    • Restructure multichannel
      • Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
      • Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
    • Authentication mechanisms
      • Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.


    Officially Become a Kernel Hacker! by m.crivellari

    Description

    My studies as well my spare time are dedicated to the Linux Kernel. Currently I'm focusing on interrupts on x86_64, but my interests are not restricted to one specific topic, for now.

    I also "played" a little bit with kernel modules (ie lantern, a toy packet analyzer) and I've added a new syscall in order read from a task A, the memory of a task B.

    Maybe this will be a good chance to...

    Goals

    • create my first kernel patch

    Resources

    Achivements


    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    Kill DMA and DMA32 memory zones by ptesarik

    Description

    Provide a better allocator for DMA-capable buffers, making the DMA and DMA32 zones obsolete.

    Goals

    Make a PoC kernel which can boot a x86 VM and a Raspberry Pi (because early RPi4 boards have some of the weirdest DMA constraints).

    Resources

    • LPC2024 talk:
    • video: