Project Description

The goal is to have a language model, that is able to answer technical questions on Uyuni. Uyuni documentation is too large for in-context processing, so finetuning is the way to go.

Goal for this Hackweek

Finetune a model based on llama-2-7b.

Resources

github repo

Looking for hackers with the skills:

ai uyuni

This project is part of:

Hack Week 23

Activity

  • about 2 years ago: nadvornik added keyword "ai" to this project.
  • about 2 years ago: nadvornik added keyword "uyuni" to this project.
  • about 2 years ago: nadvornik originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    "what is it" file and directory analysis via MCP and local LLM, for console and KDE by rsimai

    Description

    Users sometimes wonder what files or directories they find on their local PC are good for. If they can't determine from the filename or metadata, there should an easy way to quickly analyze the content and at least guess the meaning. An LLM could help with that, through the use of a filesystem MCP and to-text-converters for typical file types. Ideally this is integrated into the desktop environment but works as well from a console. All data is processed locally or "on premise", no artifacts remain or leave the system.

    Goals

    • The user can run a command from the console, to check on a file or directory
    • The filemanager contains the "analyze" feature within the context menu
    • The local LLM could serve for other use cases where privacy matters

    TBD

    • Find or write capable one-shot and interactive MCP client
    • Find or write simple+secure file access MCP server
    • Create local LLM service with appropriate footprint, containerized
    • Shell command with options
    • KDE integration (Dolphin)
    • Package
    • Document

    Resources


    Try AI training with ROCm and LoRA by bmwiedemann

    Description

    I want to setup a Radeon RX 9600 XT 16 GB at home with ROCm on Slowroll.

    Goals

    I want to test how fast AI inference can get with the GPU and if I can use LoRA to re-train an existing free model for some task.

    Resources

    • https://rocm.docs.amd.com/en/latest/compatibility/compatibility-matrix.html
    • https://build.opensuse.org/project/show/science:GPU:ROCm
    • https://src.opensuse.org/ROCm/
    • https://www.suse.com/c/lora-fine-tuning-llms-for-text-classification/

    Results

    got inference working with llama.cpp:

    export LLAMACPP_ROCM_ARCH=gfx1200
    HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
    cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$LLAMACPP_ROCM_ARCH \
    -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
    -Dhipblas_DIR=/usr/lib64/cmake/hipblaslt/ \
    && cmake --build build --config Release -j8
    m=models/gpt-oss-20b-mxfp4.gguf
    cd $P/llama.cpp && build/bin/llama-server --model $m --threads 8 --port 8005 --host 0.0.0.0 --device ROCm0 --n-gpu-layers 999
    

    Without the --device option it faulted. Maybe because my APU also appears there?

    I updated/fixed various related packages: https://src.opensuse.org/ROCm/rocm-examples/pulls/1 https://src.opensuse.org/ROCm/hipblaslt/pulls/1 SR 1320959

    benchmark

    I benchmarked inference with llama.cpp + gpt-oss-20b-mxfp4.gguf and ROCm offloading to a Radeon RX 9060 XT 16GB. I varied the number of layers that went to the GPU:

    • 0 layers 14.49 tokens/s (8 CPU cores)
    • 9 layers 17.79 tokens/s 34% VRAM
    • 15 layers 22.39 tokens/s 51% VRAM
    • 20 layers 27.49 tokens/s 64% VRAM
    • 24 layers 41.18 tokens/s 74% VRAM
    • 25+ layers 86.63 tokens/s 75% VRAM (only 200% CPU load)

    So there is a significant performance-boost if the whole model fits into the GPU's VRAM.


    Enable more features in mcp-server-uyuni by j_renner

    Description

    I would like to contribute to mcp-server-uyuni, the MCP server for Uyuni / Multi-Linux Manager) exposing additional features as tools. There is lots of relevant features to be found throughout the API, for example:

    • System operations and infos
    • System groups
    • Maintenance windows
    • Ansible
    • Reporting
    • ...

    At the end of the week I managed to enable basic system group operations:

    • List all system groups visible to the user
    • Create new system groups
    • List systems assigned to a group
    • Add and remove systems from groups

    Goals

    • Set up test environment locally with the MCP server and client + a recent MLM server [DONE]
    • Identify features and use cases offering a benefit with limited effort required for enablement [DONE]
    • Create a PR to the repo [DONE]

    Resources


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome


    Set Up an Ephemeral Uyuni Instance by mbussolotto

    Description

    To test, check, and verify the latest changes in the master branch, we want to easily set up an ephemeral environment.

    Goals

    • Create an ephemeral environment manually
    • Create an ephemeral environment automatically

      Resources

    • https://github.com/uyuni-project/uyuni

    • https://www.uyuni-project.org/uyuni-docs/en/uyuni/index.html


    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    Ansible to Salt integration by vizhestkov

    Description

    We already have initial integration of Ansible in Salt with the possibility to run playbooks from the salt-master on the salt-minion used as an Ansible Control node.

    In this project I want to check if it possible to make Ansible working on the transport of Salt. Basically run playbooks with Ansible through existing established Salt (ZeroMQ) transport and not using ssh at all.

    It could be a good solution for the end users to reuse Ansible playbooks or run Ansible modules they got used to with no effort of complex configuration with existing Salt (or Uyuni/SUSE Multi Linux Manager) infrastructure.

    Goals

    • [v] Prepare the testing environment with Salt and Ansible installed
    • [v] Discover Ansible codebase to figure out possible ways of integration
    • [v] Create Salt/Uyuni inventory module
    • [v] Make basic modules to work with no using separate ssh connection, but reusing existing Salt connection
    • [v] Test some most basic playbooks

    Resources

    GitHub page

    Video of the demo


    Set Uyuni to manage edge clusters at scale by RDiasMateus

    Description

    Prepare a Poc on how to use MLM to manage edge clusters. Those cluster are normally equal across each location, and we have a large number of them.

    The goal is to produce a set of sets/best practices/scripts to help users manage this kind of setup.

    Goals

    step 1: Manual set-up

    Goal: Have a running application in k3s and be able to update it using System Update Controler (SUC)

    • Deploy Micro 6.2 machine
    • Deploy k3s - single node

      • https://docs.k3s.io/quick-start
    • Build/find a simple web application (static page)

      • Build/find a helmchart to deploy the application
    • Deploy the application on the k3s cluster

    • Install App updates through helm update

    • Install OS updates using MLM

    step 2: Automate day 1

    Goal: Trigger the application deployment and update from MLM

    • Salt states For application (with static data)
      • Deploy the application helmchart, if not present
      • install app updates through helmchart parameters
    • Link it to GIT
      • Define how to link the state to the machines (based in some pillar data? Using configuration channels by importing the state? Naming convention?)
      • Use git update to trigger helmchart app update
    • Recurrent state applying configuration channel?

    step 3: Multi-node cluster

    Goal: Use SUC to update a multi-node cluster.

    • Create a multi-node cluster
    • Deploy application
      • call the helm update/install only on control plane?
    • Install App updates through helm update
    • Prepare a SUC for OS update (k3s also? How?)
      • https://github.com/rancher/system-upgrade-controller
      • https://documentation.suse.com/cloudnative/k3s/latest/en/upgrades/automated.html
      • Update/deploy the SUC?
      • Update/deploy the SUC CRD with the update procedure