You need to sign in or sign up before continuing.

Project Description

The goal is to have a language model, that is able to answer technical questions on Uyuni. Uyuni documentation is too large for in-context processing, so finetuning is the way to go.

Goal for this Hackweek

Finetune a model based on llama-2-7b.

Resources

github repo

Looking for hackers with the skills:

ai uyuni

This project is part of:

Hack Week 23

Activity

  • about 2 years ago: nadvornik added keyword "ai" to this project.
  • about 2 years ago: nadvornik added keyword "uyuni" to this project.
  • about 2 years ago: nadvornik originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution


    MCP Server for SCC by digitaltomm

    Description

    Provide an MCP Server implementation for customers to access data on scc.suse.com via MCP protocol. The core benefit of this MCP interface is that it has direct (read) access to customer data in SCC, so the AI agent gets enhanced knowledge about individual customer data, like subscriptions, orders and registered systems.

    Architecture

    Schema

    Goals

    We want to demonstrate a proof of concept to connect to the SCC MCP server with any AI agent, for example gemini-cli or codex. Enabling the user to ask questions regarding their SCC inventory.

    For this Hackweek, we target that users get proper responses to these example questions:

    • Which of my currently active systems are running products that are out of support?
    • Do I have ready to use registration codes for SLES?
    • What are the latest 5 released patches for SLES 15 SP6? Output as a list with release date, patch name, affected package names and fixed CVEs.
    • Which versions of kernel-default are available on SLES 15 SP6?

    Technical Notes

    Similar to the organization APIs, this can expose to customers data about their subscriptions, orders, systems and products. Authentication should be done by organization credentials, similar to what needs to be provided to RMT/MLM. Customers can connect to the SCC MCP server from their own MCP-compatible client and Large Language Model (LLM), so no third party is involved.

    Milestones

    [x] Basic MCP API setup
      MCP endpoints
      [x] Products / Repositories
      [x] Subscriptions / Orders 
      [x] Systems
      [x] Packages
    [x] Document usage with Gemini CLI, Codex
    

    Resources

    Gemini CLI setup:

    ~/.gemini/settings.json:


    Update M2Crypto by mcepl

    There are couple of projects I work on, which need my attention and putting them to shape:

    Goal for this Hackweek

    • Put M2Crypto into better shape (most issues closed, all pull requests processed)
    • More fun to learn jujutsu
    • Play more with Gemini, how much it help (or not).
    • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.


    MCP Trace Suite by r1chard-lyu

    Description

    This project plans to create an MCP Trace Suite, a system that consolidates commonly used Linux debugging tools such as bpftrace, perf, and ftrace.

    The suite is implemented as an MCP Server. This architecture allows an AI agent to leverage the server to diagnose Linux issues and perform targeted system debugging by remotely executing and retrieving tracing data from these powerful tools.

    • Repo: https://github.com/r1chard-lyu/systracesuite
    • Demo: Slides

    Goals

    1. Build an MCP Server that can integrate various Linux debugging and tracing tools, including bpftrace, perf, ftrace, strace, and others, with support for future expansion of additional tools.

    2. Perform testing by intentionally creating bugs or issues that impact system performance, allowing an AI agent to analyze the root cause and identify the underlying problem.

    Resources

    • Gemini CLI: https://geminicli.com/
    • eBPF: https://ebpf.io/
    • bpftrace: https://github.com/bpftrace/bpftrace/
    • perf: https://perfwiki.github.io/main/
    • ftrace: https://github.com/r1chard-lyu/tracium/


    Uyuni read-only replica by cbosdonnat

    Description

    For now, there is no possible HA setup for Uyuni. The idea is to explore setting up a read-only shadow instance of an Uyuni and make it as useful as possible.

    Possible things to look at:

    • live sync of the database, probably using the WAL. Some of the tables may have to be skipped or some features disabled on the RO instance (taskomatic, PXT sessions…)
    • Can we use a load balancer that routes read-only queries to either instance and the other to the RW one? For example, packages or PXE data can be served by both, the API GET requests too. The rest would be RW.

    Goals

    • Prepare a document explaining how to do it.
    • PR with the needed code changes to support it


    Ansible to Salt integration by vizhestkov

    Description

    We already have initial integration of Ansible in Salt with the possibility to run playbooks from the salt-master on the salt-minion used as an Ansible Control node.

    In this project I want to check if it possible to make Ansible working on the transport of Salt. Basically run playbooks with Ansible through existing established Salt (ZeroMQ) transport and not using ssh at all.

    It could be a good solution for the end users to reuse Ansible playbooks or run Ansible modules they got used to with no effort of complex configuration with existing Salt (or Uyuni/SUSE Multi Linux Manager) infrastructure.

    Goals

    • [v] Prepare the testing environment with Salt and Ansible installed
    • [v] Discover Ansible codebase to figure out possible ways of integration
    • [v] Create Salt/Uyuni inventory module
    • [v] Make basic modules to work with no using separate ssh connection, but reusing existing Salt connection
    • [v] Test some most basic playbooks

    Resources

    GitHub page

    Video of the demo


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome


    Uyuni Health-check Grafana AI Troubleshooter by ygutierrez

    Description

    This project explores the feasibility of using the open-source Grafana LLM plugin to enhance the Uyuni Health-check tool with LLM capabilities. The idea is to integrate a chat-based "AI Troubleshooter" directly into existing dashboards, allowing users to ask natural-language questions about errors, anomalies, or performance issues.

    Goals

    • Investigate if and how the grafana-llm-app plug-in can be used within the Uyuni Health-check tool.
    • Investigate if this plug-in can be used to query LLMs for troubleshooting scenarios.
    • Evaluate support for local LLMs and external APIs through the plugin.
    • Evaluate if and how the Uyuni MCP server could be integrated as another source of information.

    Resources

    Grafana LMM plug-in

    Uyuni Health-check


    Set Up an Ephemeral Uyuni Instance by mbussolotto

    Description

    To test, check, and verify the latest changes in the master branch, we want to easily set up an ephemeral environment.

    Goals

    • Create an ephemeral environment manually
    • Create an ephemeral environment automatically

      Resources

    • https://github.com/uyuni-project/uyuni

    • https://www.uyuni-project.org/uyuni-docs/en/uyuni/index.html