Project Description

openSUSE claims quite a lot of Arm boards to be supported. But we lack testing on that boards. There was some effort done to test Raspberry Pi on bare metal. The idea of this project is, to enhance the support and integrate other boards as well.

Goal for this Hackweek

Build a small lab with two or more boards testing openSUSE with openQA bare metal.

Resources

https://github.com/ggardet/blog/blob/master/HowTo-AddtestsonrealhardwarewithopenQA-RPi3_case.md

Looking for hackers with the skills:

arm arm64 openqa

This project is part of:

Hack Week 20

Activity

  • over 3 years ago: okurz liked this project.
  • over 3 years ago: mbrugger started this project.
  • almost 4 years ago: pdostal liked this project.
  • almost 4 years ago: radolin liked this project.
  • almost 4 years ago: maritawerner liked this project.
  • almost 4 years ago: dancermak liked this project.
  • almost 4 years ago: mbrugger added keyword "arm64" to this project.
  • almost 4 years ago: mbrugger added keyword "openqa" to this project.
  • almost 4 years ago: mbrugger added keyword "arm" to this project.
  • almost 4 years ago: mbrugger originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Create openSUSE images for Arm/RISC-V boards by avicenzi

    Project Description

    Create openSUSE images (or test generic EFI images) for Arm and/or RISC-V boards that are not yet supported.

    Goal for this Hackweek

    Create bootable images of Tumbleweed for SBCs that currently have no images available or are untested.

    Consider generic EFI images where possible, as some boards can hold a bootloader.

    Document in the openSUSE Wiki how to flash and use the image for a given board.

    Boards that I have around and there are no images:

    • Rock 3B
    • Nano PC T3 Plus
    • Lichee RV D1
    • StartFive VisionFive (has some image needs testing)

    Hack Week 22

    Hack Week 21

    Resources


    Investigate non-booting Forlinx OKMX8MX-C board (aarch64) by a_faerber

    Description

    In the context of a SUSE customer inquiry last year, a Forlinx OKMX8MX-C arm64 board had been relayed to me from China that a customer was not successful booting SUSE Linux Micro on. Typically this happens when the vendor's bootloader (e.g., U-Boot) is not configured properly (e.g., U-Boot's distro boot) to be compliant with Arm SystemReady Devicetree (formerly IR) band. Unfortunately I could not immediately get it to emit any output, to even diagnose why it wasn't working. There was no public documentation on the vendor's website to even confirm I was checking the right UARTs.

    Earlier this year (2024) I happened to meet the ODM/OEM, Forlinx, at Embedded World 2024 in Nuremberg and again the Monday before Hackweek 24 at Electronica 2024 in Munich. The big puzzle was that the PCB print "OKMX8MX-C" does not match any current Forlinx product, there being OKMX8MM-C and OKMX8MP-C products with the Mini and Plus variants of NXP i.MX 8M family instead. One suggestion from Forlinx staff was to double-check the DIP switches on the board for boot mode selection.

    Goals

    Double-check the board name and investigate further what may be wrong with this board.

    Resources

    none

    Progress

    • The board name is indeed as spelled above, not matching any product on forlinx.net.
    • The DIP switches were set to boot from microSD.
    • Changing the DIP switches to eMMC boot did result in UART1 RS-232 output! (although at times garbled with the cable supplied and USB adapter used)
    • As feared, it did not automatically load our GRUB from USB.
    • Booting our GRUB manually from USB (via eMMC U-Boot commands fatload+bootefi) was unsuccessful, with partially Chinese error messages.
    • This confirmed the initial suspicion, already shared with Forlinx at Embedded World 2024, that the Forlinx System-on-Module's boot firmware was not Arm SystemReady Devicetree compliant and that a firmware update would be necessary to remedy that.
    • The microSD card turned out not to contain a bootable image but to only include Chinese-language board documentation (dated 20220507) and BSP files. They used a diverging name of OKMX8MQ-C.


    Setup a new openQA on more powerful server by JNa

    Description

    • currently local openQA storage is insufficient

    Goals

    -Migrate to more powerful machine

    Resources

    -Service Rainbow


    New features in openqa-trigger-from-obs for openQA by jlausuch

    Description

    Implement new features in openqa-trigger-from-obs to make xml more flexible.

    Goals

    One of the features to be implemented: - Possibility to define "VERSION" and "ARCH" variables per flavor instead of global.

    Resources

    https://github.com/os-autoinst/openqa-trigger-from-obs


    OpenQA Golang api client by hilchev

    Description

    I would like to make a simple cli tool to communicate with the OpenQA API

    Goals

    • OpenQA has a ton of information that is hard to get via the UI. A tool like this would make my life easier :)
    • Would potentially make it easier in the future to make UI changes without Perl.
    • Improve my Golang skills

    Resources

    • https://go.dev/doc/
    • https://openqa.opensuse.org/api


    Learn obs/ibs sync tool by xlai

    Description

    Once images/repo are built from IBS/OBS, there is a tool to sync the image from IBS/OBS to openqa asset directory and trigger openqa jobs accordingly.

    Goals

    Check how the tool is implemented, and be capable to add/modify our needed images/repo in future by ourselves.

    Resources

    • https://github.com/os-autoinst/openqa-trigger-from-obs
    • https://gitlab.suse.de/openqa/openqa-trigger-from-ibs-plugin/-/tree/master?ref_type=heads


    Make more sense of openQA test results using AI by livdywan

    Description

    AI has the potential to help with something many of us spend a lot of time doing which is making sense of openQA logs when a job fails.

    User Story

    Allison Average has a puzzled look on their face while staring at log files that seem to make little sense. Is this a known issue, something completely new or maybe related to infrastructure changes?

    Goals

    • Leverage a chat interface to help Allison
    • Create a model from scratch based on data from openQA
    • Proof of concept for automated analysis of openQA test results

    Bonus

    • Use AI to suggest solutions to merge conflicts
      • This would need a merge conflict editor that can suggest solving the conflict
    • Use image recognition for needles

    Resources

    Timeline

    Day 1

    • Conversing with open-webui to teach me how to create a model based on openQA test results

    Day 2

    Highlights

    • I briefly tested compared models to see if they would make me more productive. Between llama, gemma and mistral there was no amazing difference in the results for my case.
    • Convincing the chat interface to produce code specific to my use case required very explicit instructions.
    • Asking for advice on how to use open-webui itself better was frustratingly unfruitful both in trivial and more advanced regards.
    • Documentation on source materials used by LLM's and tools for this purpose seems virtually non-existent - specifically if a logo can be generated based on particular licenses

    Outcomes

    • Chat interface-supported development is providing good starting points and open-webui being open source is more flexible than Gemini. Although currently some fancy features such as grounding and generated podcasts are missing.
    • Allison still has to be very experienced with openQA to use a chat interface for test review. Publicly available system prompts would make that easier, though.