Project Description

Idea is to predefine a set of security policies for popular container applications just for example MySQL, Nginx etc..., with these predefined security policies, users can just download unpack it to use. No need to worry too much about detailed security settings/configurations for this application container. The policies could be any policies that Kubernetes supported and/or NeuVector supported.

Today, there are security policies being supported by Kubernetes like NetworkPolicy, there are extended policies like KubeWarden admission control policies, there are advanced security policy like NeuVector's L7 network policy, process & file policy etc... All these policies are providing functions to secure a Kubernetes environment. From end user point of view, it is good but not convenient enough to use unless users are security experts. So idea is, we could create many predefined security policies for many popular container applications, define these as a Kubernetes standard format like CRD extension just for example. Make these the building blocks coupled with the app images, so when users pull a container, a security policy can be imported at same time. The basic security settings (baseline) will be in place right away. If NeuVector was installed already then the enforcement is in place as well. Most of the users will have basic security in place by doing almost nothing. (of course, if it's necessary, users can still customize or fine tune the predefined templates.)

Security needs to be easy to use but still strong enough to protect, a lot of security postures/configurations/policies could be already defined when this application container image is created. These security manifest is different per apps but it is relatively stable per container as well. So, if we can create or generate security policy templates for popular application images, eventually make some of solid ones a built-in template, or even grow to be a hosted security policy hub. It could be a new critical way to secure Kubernetes world.

Goal for this Hackweek

Study this deeper, choose a few popular applications and make a prototype/demo to proof the concept.

Resources

Some of the policies might not be a good fit to be profiled as manifest. Here we will be focusing on relatively stable application security posture/configuration/runtime policies. Starting point could be look into these:

https://open-docs.neuvector.com/policy/overview

https://kubernetes.io/docs/concepts/services-networking/network-policies/

https://docs.kubewarden.io/writing-policies

https://kyverno.io/docs/kyverno-policies/

Looking for hackers with the skills:

security kubernetes containers neuvector kubewarden

This project is part of:

Hack Week 23

Activity

  • about 1 year ago: amunoz liked this project.
  • about 1 year ago: heidi.bronson liked this project.
  • about 1 year ago: feih added keyword "kubewarden" to this project.
  • about 1 year ago: feih added keyword "neuvector" to this project.
  • about 1 year ago: feih added keyword "containers" to this project.
  • about 1 year ago: feih added keyword "kubernetes" to this project.
  • about 1 year ago: feih added keyword "security" to this project.
  • about 1 year ago: feih originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Model checking the BPF verifier by shunghsiyu

    Project Description

    BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

    One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

    For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

    Goal for this Hackweek

    Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

    Resources


    Bot to identify reserved data leak in local files or when publishing on remote repository by mdati

    Description

    Scope here is to prevent reserved data or generally "unwanted", to be pushed and saved on a public repository, i.e. on Github, causing disclosure or leaking of reserved informations.

    The above definition of reserved or "unwanted" may vary, depending on the context: sometime secret keys or password are stored in data or configuration files or hardcoded in source code and depending on the scope of the archive or the level of security, it can be either wanted, permitted or not at all.

    As main target here, secrets will be registration keys or passwords, to be detected and managed locally or in a C.I. pipeline.

    Goals

    • Detection:

      • Local detection: detect secret words present in local files;
      • Remote detection: detect secrets in files, in pipelines, going to be transferred on a remote repository, i.e. via git push;
    • Reporting:

      • report the result of detection on stderr and/or log files, noticed excluding the secret values.
    • Acton:

      • Manage the detection, by either deleting or masking the impacted code or deleting/moving the file itself or simply notify it.

    Resources

    • Project repository, published on Github (link): m-dati/hkwk24;
    • Reference folder: hkwk24/chksecret;
    • First pull request (link): PR#1;
    • Second PR, for improvements: PR#2;
    • README.md and TESTS.md documentation files available in the repo root;
    • Test subproject repository, for testing CI on push [TBD].

    Notes

    We use here some examples of secret words, that still can be improved.
    The various patterns to match desired reserved words are written in a separated module, to be on demand updated or customized.

    [Legend: TBD = to be done]


    Migrate from Docker to Podman by tjyrinki_suse

    Description

    I'd like to continue my former work on containerization of several domains on a single server by changing from Docker containers to Podman containers. That will need an OS upgrade as well as Podman is not available in that old server version.

    Goals

    • Update OS.
    • Migrate from Docker to Podman.
    • Keep everything functional, including the existing "meanwhile done" additional Docker container that is actually being used already.
    • Keep everything at least as secure as currently. One of the reasons of having the containers is to isolate risks related to services open to public Internet.
    • Try to enable the Podman use in production.
    • At minimum, learn about all of these topics.
    • Optionally, improve Ansible side of things as well...

    Resources

    A search engine is one's friend. Migrating from Docker to Podman, and from docker-compose to podman-compose.


    CVE portal for SUSE Rancher products by gmacedo

    Description

    Currently it's a bit difficult for users to quickly see the list of CVEs affecting images in Rancher, RKE2, Harvester and Longhorn releases. Users need to individually look for each CVE in the SUSE CVE database page - https://www.suse.com/security/cve/ . This is not optimal, because those CVE pages are a bit hard to read and contain data for all SLE and BCI products too, making it difficult to easily see only the CVEs affecting the latest release of Rancher, for example. We understand that certain costumers are only looking for CVE data for Rancher and not SLE or BCI.

    Goals

    The objective is to create a simple to read and navigate page that contains only CVE data related to Rancher, RKE2, Harvester and Longhorn, where it's easy to search by a CVE ID, an image name or a release version. The page should also provide the raw data as an exportable CSV file.

    It must be an MVP with the minimal amount of effort/time invested, but still providing great value to our users and saving the wasted time that the Rancher Security team needs to spend by manually sharing such data. It might not be long lived, as it can be replaced in 2-3 years with a better SUSE wide solution.

    Resources

    • The page must be simple and easy to read.
    • The UI/UX must be as straightforward as possible with minimal visual noise.
    • The content must be created automatically from the raw data that we already have internally.
    • It must be updated automatically on a daily basis and on ad-hoc runs (when needed).
    • The CVE status must be aligned with VEX.
    • The raw data must be exportable as CSV file.
    • Ideally it will be written in Go or pure Shell script with basic HTML and no external dependencies in CSS or JS.


    Kanidm: A safe and modern IDM system by firstyear

    Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.

    Kanidm Github

    In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.

    In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.

    For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.

    I'm happy to help and share more, so please get in touch!


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia

    Description

    kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.

    Goals

    1. Seamless Multi-Cluster Cloning
      • Clone Kubernetes resources across clusters/projects with one command.
      • Simplifies management, reduces operational effort.

    Resources

    1. Rancher & Kubernetes Docs

      • Rancher API, Cluster Management, Kubernetes client libraries.
    2. Development Tools

      • Kubectl plugin docs, Go programming resources.

    Building and Installing the Plugin

    1. Set Environment Variables: Export the Rancher URL and API token:
    • export RANCHER_URL="https://rancher.example.com"
    • export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
    1. Build the Plugin: Compile the Go program:
    • go build -o kubectl-clone ./pkg/
    1. Install the Plugin: Move the executable to a directory in your PATH:
    • mv kubectl-clone /usr/local/bin/

    Ensure the file is executable:

    • chmod +x /usr/local/bin/kubectl-clone
    1. Verify the Plugin Installation: Test the plugin by running:
    • kubectl clone --help

    You should see the usage information for the kubectl-clone plugin.

    Usage Examples

    1. Clone a Deployment from One Cluster to Another:
    • kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
    1. Clone a Service into Another Namespace and Modify Labels:


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goal for this Hackweek

    Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up


    Introducing "Bottles": A Proof of Concept for Multi-Version CRD Management in Kubernetes by aruiz

    Description

    As we delve deeper into the complexities of managing multiple CRD versions within a single Kubernetes cluster, I want to introduce "Bottles" - a proof of concept that aims to address these challenges.

    Bottles propose a novel approach to isolating and deploying different CRD versions in a self-contained environment. This would allow for greater flexibility and efficiency in managing diverse workloads.

    Goals

    • Evaluate Feasibility: determine if this approach is technically viable, as well as identifying possible obstacles and limitations.
    • Reuse existing technology: leverage existing products whenever possible, e.g. build on top of Kubewarden as admission controller.
    • Focus on Rancher's use case: the ultimate goal is to be able to use this approach to solve Rancher users' needs.

    Resources

    Core concepts:

    • ConfigMaps: Bottles could be defined and configured using ConfigMaps.
    • Admission Controller: An admission controller will detect "bootled" CRDs being installed and replace the resource name used to store them.
    • Aggregated API Server: By analyzing the author of a request, the aggregated API server will determine the correct bottle and route the request accordingly, making it transparent for the user.


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    Improve Development Environment on Uyuni by mbussolotto

    Description

    Currently create a dev environment on Uyuni might be complicated. The steps are:

    • add the correct repo
    • download packages
    • configure your IDE (checkstyle, format rules, sonarlint....)
    • setup debug environment
    • ...

    The current doc can be improved: some information are hard to be find out, some others are completely missing.

    Dev Container might solve this situation.

    Goals

    Uyuni development in no time:

    • using VSCode:
      • setting.json should contains all settings (for all languages in Uyuni, with all checkstyle rules etc...)
      • dev container should contains all dependencies
      • setup debug environment
    • implement a GitHub Workspace solution
    • re-write documentation

    Lots of pieces are already implemented: we need to connect them in a consistent solution.

    Resources

    • https://github.com/uyuni-project/uyuni/wiki


    Port the classic browser game HackTheNet to PHP 8 by dgedon

    Description

    The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.

    Goals

    • Port the game to PHP 8 and MariaDB 11
    • Create a container where the game server can simply be started/stopped

    Resources

    • https://github.com/nodeg/hackthenet


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Cluster API Add-on Provider for Kubewarden by csalas

    Description

    Can we integrate Kubewarden with Cluster API provisioning?

    Cluster API is a Kubernetes project focused on providing declarative APIs and tooling to simplify provisioning, upgrading, and operating multiple Kubernetes clusters. TLDR; CAPI let's you define Kubernetes clusters in plain YAML, and CAPI providers (infrastructure, control plane/bootstrap, etc.) manage provisioning and configuration for you.

    What if we could create an add-on provider that automatically installs Kubewarden and deploys Policy Servers to CAPI clusters?

    Goals

    • As a user I'd like to set a cluster (or list of clusters) and have the provider install Kubewarden for me.
    • As a user I'd like to set what policies must be enforced for a cluster (or list of clusters).

    Resources

    • Cluster API: https://cluster-api.sigs.k8s.io/
    • Kubewarden: https://docs.kubewarden.io/