Project Description

As Generative AI is everywhere around, we want to research its possibilities, how it can help SUSE, its employees and customers. The initial idea is to build solution based on Amazon Bedrock, to integrate our asset management tools and to be able to query the data and get the answers using human-like text.

Goal for this Hackweek

Populate all available data from SUSE Asset management tools (integrate with Jira Insight, Racktables, CloudAccountMetadata, Cloudquery,...) into the foundational model (e.g. Amazon Titan). Then make the foundational model able to answer simple queries like how many VMs are running in PRG2 or who are the owners of EC2 instances of t2 family.

This is only one of the ideas for GenAI we have. Most probably we will try to cover also another scenarios. If you are interested or you have any other idea how to utilize foundational models, let us know.

Resources

  • https://aws.amazon.com/bedrock/
  • https://github.com/aws-samples/amazon-bedrock-workshop
  • Specifically for this hackweek was created AWS Account ITPE Gen IA Dev (047178302800) accessible via Okta - whoever is interested, please contact me (or raise JiraSD ticket to be added to CLZ: ITPE Gen IA Dev) and use region us-west-2 (don't mind the typo, heh).
  • we have booked AWS engineer, expert on Bedrock on 2023-11-06 (1-5pm CET, meeting link) - anyone interested can join

Keywords

AI, GenAI, GenerativeAI, AWS, Amazon Bedrock, Amazon Titan, Asset Management

Looking for hackers with the skills:

ai genai generativeai aws amazontitan assetmanagement bedrock

This project is part of:

Hack Week 23

Activity

  • about 2 years ago: vadim joined this project.
  • about 2 years ago: ralwal joined this project.
  • about 2 years ago: rjagu joined this project.
  • about 2 years ago: rjagu left this project.
  • about 2 years ago: rjagu joined this project.
  • over 2 years ago: lthadeus liked this project.
  • over 2 years ago: ralwal liked this project.
  • over 2 years ago: mpiala started this project.
  • over 2 years ago: mpiala added keyword "bedrock" to this project.
  • over 2 years ago: mpiala removed keyword amazonbedrock from this project.
  • over 2 years ago: mpiala added keyword "assetmanagement" to this project.
  • over 2 years ago: mpiala added keyword "ai" to this project.
  • over 2 years ago: mpiala added keyword "genai" to this project.
  • over 2 years ago: mpiala added keyword "generativeai" to this project.
  • over 2 years ago: mpiala added keyword "aws" to this project.
  • over 2 years ago: mpiala added keyword "amazonbedrock" to this project.
  • over 2 years ago: mpiala added keyword "amazontitan" to this project.
  • over 2 years ago: mpiala originated this project.

  • Comments

    • mpiala
      about 2 years ago by mpiala | Reply

      slides from the AWS workshop: https://mysuse.sharepoint.com/:b:/s/suse-it-infra/EYUbSRf1y5NqAq9Owjh6cQB0ESOJnJRzx83P5d2EzTMA?e=j8miG1

    • mpiala
      about 2 years ago by mpiala | Reply

      and recording of the workshop: Gen AI with AWS-20231106_130308-Meeting Recording.mp4

    • vadim
      about 2 years ago by vadim | Reply

      @mpiala now that we all have some hands on experience with bedrock I suggest that you create a few workgroup sessions for tomorrow / Thursday and invite contributors. I'd split the work into three workstreams:

      1. Create infrastructure / pipelines that would deploy the project in a reproducible way
      2. Create a crawler that would parse the source data and populate a vector database (probably a lambda that can be triggered by cloudwatch)
      3. Create a backend that would query the vector DB, run inference and integrate with slack

      For vector DB we can use something off the shelf, like pinecone.io - later we can move it to Athena or something else.

    Similar Projects

    The Agentic Rancher Experiment: Do Androids Dream of Electric Cattle? by moio

    Rancher is a beast of a codebase. Let's investigate if the new 2025 generation of GitHub Autonomous Coding Agents and Copilot Workspaces can actually tame it. A GitHub robot mascot trying to lasso a blue bull with a Kubernetes logo tatooed on it


    The Plan

    Create a sandbox GitHub Organization, clone in key Rancher repositories, and let the AI loose to see if it can handle real-world enterprise OSS maintenance - or if it just hallucinates new breeds of Kubernetes resources!

    Specifically, throw "Agentic Coders" some typical tasks in a complex, long-lived open-source project, such as:


    The Grunt Work: generate missing GoDocs, unit tests, and refactorings. Rebase PRs.

    The Complex Stuff: fix actual (historical) bugs and feature requests to see if they can traverse the complexity without (too much) human hand-holding.

    Hunting Down Gaps: find areas lacking in docs, areas of improvement in code, dependency bumps, and so on.


    If time allows, also experiment with Model Context Protocol (MCP) to give agents context on our specific build pipelines and CI/CD logs.

    Why?

    We know AI can write "Hello World." and also moderately complex programs from a green field. But can it rebase a 3-month-old PR with conflicts in rancher/rancher? I want to find the breaking point of current AI agents to determine if and how they can help us to reduce our technical debt, work faster and better. At the same time, find out about pitfalls and shortcomings.

    The CONCLUSION!!!

    A add-emoji State of the Union add-emoji document was compiled to summarize lessons learned this week. For more gory details, just read on the diary below! add-emoji


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    Backporting patches using LLM by jankara

    Description

    Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.

    Goals

    • Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
    • Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
    • Explore success rate of LLMs when backporting various patches.

    Resources

    • Docker
    • Gemini CLI

    Repository

    Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py


    Is SUSE Trending? Popularity and Developer Sentiment Insight Using Native AI Capabilities by terezacerna

    Description

    This project aims to explore the popularity and developer sentiment around SUSE and its technologies compared to Red Hat and their technologies. Using publicly available data sources, I will analyze search trends, developer preferences, repository activity, and media presence. The final outcome will be an interactive Power BI dashboard that provides insights into how SUSE is perceived and discussed across the web and among developers.

    Goals

    1. Assess the popularity of SUSE products and brand compared to Red Hat using Google Trends.
    2. Analyze developer satisfaction and usage trends from the Stack Overflow Developer Survey.
    3. Use the GitHub API to compare SUSE and Red Hat repositories in terms of stars, forks, contributors, and issue activity.
    4. Perform sentiment analysis on GitHub issue comments to measure community tone and engagement using built-in Copilot capabilities.
    5. Perform sentiment analysis on Reddit comments related to SUSE technologies using built-in Copilot capabilities.
    6. Use Gnews.io to track and compare the volume of news articles mentioning SUSE and Red Hat technologies.
    7. Test the integration of Copilot (AI) within Power BI for enhanced data analysis and visualization.
    8. Deliver a comprehensive Power BI report summarizing findings and insights.
    9. Test the full potential of Power BI, including its AI features and native language Q&A.

    Resources

    1. Google Trends: Web scraping for search popularity data
    2. Stack Overflow Developer Survey: For technology popularity and satisfaction comparison
    3. GitHub API: For repository data (stars, forks, contributors, issues, comments).
    4. Gnews.io API: For article volume and mentions analysis.
    5. Reddit: SUSE related topics with comments.


    GenAI-Powered Systemic Bug Evaluation and Management Assistant by rtsvetkov

    Motivation

    What is the decision critical question which one can ask on a bug? How this question affects the decision on a bug and why?

    Let's make GenAI look on the bug from the systemic point and evaluate what we don't know. Which piece of information is missing to take a decision?

    Description

    To build a tool that takes a raw bug report (including error messages and context) and uses a large language model (LLM) to generate a series of structured, Socratic-style or Systemic questions designed to guide a the integration and development toward the root cause, rather than just providing a direct, potentially incorrect fix.

    Goals

    Set up a Python environment

    Set the environment and get a Gemini API key. 2. Collect 5-10 realistic bug reports (from open-source projects, personal projects, or public forums like Stack Overflow—include the error message and the initial context).

    Build the Dialogue Loop

    1. Write a basic Python script using the Gemini API.
    2. Implement a simple conversational loop: User Input (Bug) -> AI Output (Question) -> User Input (Answer to AI's question) -> AI Output (Next Question). Code Implementation

    Socratic/Systemic Strategy Implementation

    1. Refine the logic to ensure the questions follow a Socratic and Systemic path (e.g., from symptom-> context -> assumptions -> -> critical parts -> ).
    2. Implement Function Calling (an advanced feature of the Gemini API) to suggest specific actions to the user, like "Run a ping test" or "Check the database logs."
    3. Implement Bugzillla call to collect the
    4. Implement Questioning Framework as LLVM pre-conditioning
    5. Define set of instructions
    6. Assemble the Tool

    Resources

    What are Systemic Questions?

    Systemic questions explore the relationships, patterns, and interactions within a system rather than focusing on isolated elements.
    In IT, they help uncover hidden dependencies, feedback loops, assumptions, and side-effects during debugging or architecture analysis.

    Gitlab Project

    gitlab.suse.de/sle-prjmgr/BugDecisionCritical_Question


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution


    Create a Cloud-Native policy engine with notifying capabilities to optimize resource usage by gbazzotti

    Description

    The goal of this project is to begin the initial phase of development of an all-in-one Cloud-Native Policy Engine that notifies resource owners when their resources infringe predetermined policies. This was inspired by a current issue in the CES-SRE Team where other solutions seemed to not exactly correspond to the needs of the specific workloads running on the Public Cloud Team space.

    The initial architecture can be checked out on the Repository listed under Resources.

    Among the features that will differ this project from other monitoring/notification systems:

    • Pre-defined sensible policies written at the software-level, avoiding a learning curve by requiring users to write their own policies
    • All-in-one functionality: logging, mailing and all other actions are not required to install any additional plugins/packages
    • Easy account management, being able to parse all required configuration by a single JSON file
    • Eliminate integrations by not requiring metrics to go through a data-agreggator

    Goals

    • Create a minimal working prototype following the workflow specified on the documentation
    • Provide instructions on installation/usage
    • Work on email notifying capabilities

    Resources