Project Description

klp-convert is a tool that is trying to be merged into the Linux Kernel to help livepatching non exported functions. Since kallsymsoneachsymbol and kallsymslookup_name were unexported, klp-convert appeared to solve the issue by creating relocation entries for non-export functions in the final livepatch module.

This will help the kernel livepatching team to improve our tooling by not relying in the kallsyms functions anymore.

Goal for this Hackweek

Read and understand klp-convert Comment the patches and help it to get a new iteration of the patchset, and in the future help the feature to be merged

Resources

https://lore.kernel.org/live-patching/Yg0xmWaBDNVmCB3b@redhat.com/ https://lpc.events/event/4/contributions/507/attachments/316/533/LPC2019.pdf

Looking for hackers with the skills:

livepatching kernel

This project is part of:

Hack Week 22

Activity

  • about 2 years ago: pvorel liked this project.
  • about 2 years ago: mpdesouza added keyword "kernel" to this project.
  • about 2 years ago: mpdesouza added keyword "livepatching" to this project.
  • about 2 years ago: avicenzi liked this project.
  • about 2 years ago: mpdesouza started this project.
  • about 2 years ago: mpdesouza originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Contributing to Linux Kernel security by pperego

    Description

    A couple of weeks ago, I found this blog post by Gustavo Silva, a Linux Kernel contributor.

    I always strived to start again into hacking the Linux Kernel, so I asked Coverity scan dashboard access and I want to contribute to Linux Kernel by fixing some minor issues.

    I want also to create a Linux Kernel fuzzing lab using qemu and syzkaller

    Goals

    1. Fix at least 2 security bugs
    2. Create the fuzzing lab and having it running

    The story so far

    • Day 1: setting up a virtual machine for kernel development using Tumbleweed. Reading a lot of documentation, taking confidence with Coverity dashboard and with procedures to submit a kernel patch
    • Day 2: I read really a lot of documentation and I triaged some findings on Coverity SAST dashboard. I have to confirm that SAST tool are great false positives generator, even for low hanging fruits.
    • Day 3: Working on trivial changes after I read this blog post: https://www.toblux.com/posts/2024/02/linux-kernel-patches.html. I have to take confidence with the patch preparation and submit process yet.
      • First trivial patch sent: using strtruefalse() macro instead of hard-coded strings in a staging driver for a lcd display
      • Fix for a dereference before null check issue discovered by Coverity (CID 1601566) https://scan7.scan.coverity.com/#/project-view/52110/11354?selectedIssue=1601566
    • Day 4: Triaging more issues found by Coverity.
      • The patch for CID 1601566 was refused. The check against the NULL pointer was pointless so I prepared a version 2 of the patch removing the check.
      • Fixed another dereference before NULL check in iwlmvmparsewowlaninfo_notif() routine (CID 1601547). This one was already submitted by another kernel hacker :(
    • Day 5: Wrapping up. I had to do some minor rework on patch for CID 1601566. I found a stalker bothering me in private emails and people I interacted with me, advised he is a well known bothering person. Markus Elfring for the record.
    • Wrapping up: being back doing kernel hacking is amazing and I don't want to stop it. My battery pack is completely drained but changing the scope gave me a great twist and I really want to feel this energy not doing a single task for months.

      I failed in setting up a fuzzing lab but I was too optimistic for the patch submission process.

    The patches

    1


    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    Improve various phones kernel mainline support (Qualcomm, Exynos, MediaTek) by pvorel

    Similar to previous hackweeks ( https://hackweek.opensuse.org/projects/improve-qualcomm-soc-msm8994-slash-msm8992-kernel-mainline-support, https://hackweek.opensuse.org/projects/test-mainline-kernel-on-an-older-qualcomm-soc-msm89xx-explore-mainline-kernel-qualcomm-mainlining) try to improve kernel mainline support of various phones.

    Result

    In the end I concentrated again to msm8994:


    Improve UML page fault handler by ptesarik

    Description

    Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.

    Goals

    Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.

    Resources

    Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/


    Model checking the BPF verifier by shunghsiyu

    Project Description

    BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).

    One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.

    For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.

    Goal for this Hackweek

    Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.

    Resources