There are couple of projects I work on, which need my attention and putting them to shape:

Goal for this Hackweek

  • Put M2Crypto into better shape (most issues closed, all pull requests processed)
  • More fun to learn jujutsu
  • Play more with Gemini, how much it help (or not).
  • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.

Looking for hackers with the skills:

vim python openssl jujutsu ai

This project is part of:

Hack Week 20 Hack Week 22 Hack Week 25

Activity

  • 9 days ago: vizhestkov liked this project.
  • 15 days ago: mcepl added keyword "ai" to this project.
  • 15 days ago: mcepl added keyword "jujutsu" to this project.
  • 15 days ago: mcepl removed keyword neovim from this project.
  • 15 days ago: mcepl removed keyword lua from this project.
  • almost 3 years ago: asmorodskyi joined this project.
  • almost 3 years ago: msaquib liked this project.
  • almost 3 years ago: msaquib joined this project.
  • over 4 years ago: mstrigl liked this project.
  • over 4 years ago: kstreitova liked this project.
  • over 4 years ago: mcepl started this project.
  • over 4 years ago: mcepl added keyword "vim" to this project.
  • over 4 years ago: mcepl added keyword "neovim" to this project.
  • over 4 years ago: mcepl added keyword "lua" to this project.
  • over 4 years ago: mcepl added keyword "python" to this project.
  • over 4 years ago: mcepl added keyword "openssl" to this project.
  • over 4 years ago: mcepl originated this project.

  • Comments

    • mcepl
      almost 3 years ago by mcepl | Reply

      • rope-based LSP server exists https://github.com/python-rope/pylsp-rope
      • spellsitter as a standalone hunspell-based spellchecker for nvim has been abandoned

    • asmorodskyi
      almost 3 years ago by asmorodskyi | Reply

      I have mid-level python knowledge and basic OBS knowledge and close to zero knowledge about encryption algorithms . I can try to fix some python-specific problem within package or try to do some packaging task in OBS . Can you recommend me something certain ?

      • mcepl
        almost 3 years ago by mcepl | Reply

        Yeah, it is too late now, but many of https://gitlab.com/m2crypto/m2crypto/-/issues don’t require much encryption knowledge.

    • mcepl
      almost 3 years ago by mcepl | Reply

      There was actually some progress on this project: master branch now passes the test suite through on all platforms (including Windows! hint: I don’t have one ;)), and the release of the next milestone is blocked just by https://gitlab.com/m2crypto/m2crypto/-/merge_requests/234 not passing through one test. If anybody knows anything about HTTP Transfer-Encoding: chunked and she is willing to help, I am all ears!

    Similar Projects

    Mail client with mailing list workflow support in Rust by acervesato

    Description

    To create a mail user interface using Rust programming language, supporting mailing list patches workflow. I know, aerc is already there, but I would like to create something simpler, without integrated protocols. Just a plain user interface that is using some crates to read and create emails which are fetched and sent via external tools.

    I already know Rust, but not the async support, which is needed in this case in order to handle events inside the mail folder and to send notifications.

    Goals

    • simple user interface in the style of aerc, with some vim keybindings for motions and search
    • automatic run of external tools (like mbsync) for checking emails
    • automatic run commands for notifications
    • apply patch set from ML
    • tree-sitter support with styles

    Resources

    • ratatui: user interface (https://ratatui.rs/)
    • notify: folder watcher (https://docs.rs/notify/latest/notify/)
    • mail-parser: parser for emails (https://crates.io/crates/mail-parser)
    • mail-builder: create emails in proper format (https://docs.rs/mail-builder/latest/mail_builder/)
    • patch: ML support (https://crates.io/crates/gitpatch)
    • tree-sitter-rust: support for mail format (https://crates.io/crates/tree-sitter)


    Enhance git-sha-verify: A tool to checkout validated git hashes by gpathak

    Description

    git-sha-verify is a simple shell utility to verify and checkout trusted git commits signed using GPG key. This tool helps ensure that only authorized or validated commit hashes are checked out from a git repository, supporting better code integrity and security within the workflow.

    Supports:

    • Verifying commit authenticity signed using gpg key
    • Checking out trusted commits

    Ideal for teams and projects where the integrity of git history is crucial.

    Goals

    A minimal python code of the shell script exists as a pull request.

    The goal of this hackweek is to:

    • Add more unit tests
    • Make the python code modular
    • Add code coverage if possible

    Resources


    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)


    Bring to Cockpit + System Roles capabilities from YAST by miguelpc

    Bring to Cockpit + System Roles features from YAST

    Cockpit and System Roles have been added to SLES 16 There are several capabilities in YAST that are not yet present in Cockpit and System Roles We will follow the principle of "automate first, UI later" being System Roles the automation component and Cockpit the UI one.

    Goals

    The idea is to implement service configuration in System Roles and then add an UI to manage these in Cockpit. For some capabilities it will be required to have an specific Cockpit Module as they will interact with a reasource already configured.

    Resources

    A plan on capabilities missing and suggested implementation is available here: https://docs.google.com/spreadsheets/d/1ZhX-Ip9MKJNeKSYV3bSZG4Qc5giuY7XSV0U61Ecu9lo/edit

    Linux System Roles: https://linux-system-roles.github.io/

    First meeting Hackweek catchup


    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    Debian 13

    The new version of the beloved Debian GNU/Linux OS

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [ ] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    • [ ] Package management (install, remove, update...)
    • [ ] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). Probably not for Debian as IIRC we don't support patches yet.
    • [ ] Applying any basic salt state (including a formula)
    • [ ] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement
    • [ ] Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    • [ ] Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)


    Improvements to osc (especially with regards to the Git workflow) by mcepl

    Description

    There is plenty of hacking on osc, where we could spent some fun time. I would like to see a solution for https://github.com/openSUSE/osc/issues/2006 (which is sufficiently non-serious, that it could be part of HackWeek project).


    MCP Server for SCC by digitaltomm

    Description

    Provide an MCP Server implementation for customers to access data on scc.suse.com via MCP protocol. Similar to the organization APIs, this can expose to customers data about their subscriptions, orders, systems and products. Authentication should be done by organization credentials, similar to what needs to be provided to RMT/MLM. Customers can connect to the SCC MCP server from their own MCP-compatible client and Large Language Model (LLM), so no third party is involved.

    Schema

    Goals

    We want to demonstrate a proof of concept to connect to the SCC MCP server with any AI agent, like gemini-cli, copilot or Claude desktop. Enabling the user to ask questions regarding their SCC inventory, like "When do I need to re-new my SLES subscription", "Do I have active systems running on unsupported operating systems?".

    Milestones

    [ ] Basic MCP API setup
    [ ] MCP endpoints
      [ ] Products / Repositories
      [ ] Subscriptions / Orders 
      [ ] Systems
    [ ] Document usage with VSCode Copilot, Claude Desktop, Gemini CLI
    

    Example

    Resources


    Multi-agent AI assistant for Linux troubleshooting by doreilly

    Description

    Explore multi-agent architecture as a way to avoid MCP context rot.

    Having one agent with many tools bloats the context with low-level details about tool descriptions, parameter schemas etc which hurts LLM performance. Instead have many specialised agents, each with just the tools it needs for its role. A top level supervisor agent takes the user prompt and delegates to appropriate sub-agents.

    Goals

    Create an AI assistant with some sub-agents that are specialists at troubleshooting Linux subsystems, e.g. systemd, selinux, firewalld etc. The agents can get information from the system by implementing their own tools with simple function calls, or use tools from MCP servers, e.g. a systemd-agent can use tools from systemd-mcp.

    Example prompts/responses:

    user$ the system seems slow
    assistant$ process foo with pid 12345 is using 1000% cpu ...
    
    user$ I can't connect to the apache webserver
    assistant$ the firewall is blocking http ... you can open the port with firewall-cmd --add-port ...
    

    Resources

    Language TBD - golang or python. Python ADK seems more mature, but golang is easier to package.

    https://google.github.io/adk-docs/


    Extended private brain - RAG my own scripts and data into offline LLM AI by tjyrinki_suse

    Description

    For purely studying purposes, I'd like to find out if I could teach an LLM some of my own accumulated knowledge, to use it as a sort of extended brain.

    I might use qwen3-coder or something similar as a starting point.

    Everything would be done 100% offline without network available to the container, since I prefer to see when network is needed, and make it so it's never needed (other than initial downloads).

    Goals

    1. Learn something about RAG, LLM, AI.
    2. Find out if everything works offline as intended.
    3. As an end result have a new way to access my own existing know-how, but so that I can query the wisdom in them.
    4. Be flexible to pivot in any direction, as long as there are new things learned.

    Resources

    To be found on the fly.


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources