Project Description

Create a K8s CRD for s3gw.
The operator will be written in Go.
The CRD should in the beginning allow an user to create a bucket.

Goal for this Hackweek

The CRD should in the beginning allow an user to create a bucket.

Project

https://github.com/giubacc/s3gw-operator

Looking for hackers with the skills:

golang kubernetes operator s3gw

This project is part of:

Hack Week 22

Activity

  • almost 2 years ago: gbaccini joined this project.
  • almost 2 years ago: gbaccini added keyword "golang" to this project.
  • almost 2 years ago: gbaccini added keyword "kubernetes" to this project.
  • almost 2 years ago: gbaccini added keyword "operator" to this project.
  • almost 2 years ago: gbaccini added keyword "s3gw" to this project.
  • almost 2 years ago: tdehler started this project.
  • almost 2 years ago: gbaccini originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    OpenQA Golang api client by hilchev

    Description

    I would like to make a simple cli tool to communicate with the OpenQA API

    Goals

    • OpenQA has a ton of information that is hard to get via the UI. A tool like this would make my life easier :)
    • Would potentially make it easier in the future to make UI changes without Perl.
    • Improve my Golang skills

    Resources

    • https://go.dev/doc/
    • https://openqa.opensuse.org/api


    Mammuthus - The NFS-Ganesha inside Kubernetes controller by vcheng

    Description

    As the user-space NFS provider, the NFS-Ganesha is wieldy use with serval projects. e.g. Longhorn/Rook. We want to create the Kubernetes Controller to make configuring NFS-Ganesha easy. This controller will let users configure NFS-Ganesha through different backends like VFS/CephFS.

    Goals

    1. Create NFS-Ganesha Package on OBS: nfs-ganesha5, nfs-ganesha6
    2. Create NFS-Ganesha Container Image on OBS: Image
    3. Create a Kubernetes controller for NFS-Ganesha and support the VFS configuration on demand. Mammuthus

    Resources

    NFS-Ganesha


    kubectl clone: Seamlessly Clone Kubernetes Resources Across Multiple Rancher Clusters and Projects by dpunia

    Description

    kubectl clone is a kubectl plugin that empowers users to clone Kubernetes resources across multiple clusters and projects managed by Rancher. It simplifies the process of duplicating resources from one cluster to another or within different namespaces and projects, with optional on-the-fly modifications. This tool enhances multi-cluster resource management, making it invaluable for environments where Rancher orchestrates numerous Kubernetes clusters.

    Goals

    1. Seamless Multi-Cluster Cloning
      • Clone Kubernetes resources across clusters/projects with one command.
      • Simplifies management, reduces operational effort.

    Resources

    1. Rancher & Kubernetes Docs

      • Rancher API, Cluster Management, Kubernetes client libraries.
    2. Development Tools

      • Kubectl plugin docs, Go programming resources.

    Building and Installing the Plugin

    1. Set Environment Variables: Export the Rancher URL and API token:
    • export RANCHER_URL="https://rancher.example.com"
    • export RANCHER_TOKEN="token-xxxxx:xxxxxxxxxxxxxxxxxxxx"
    1. Build the Plugin: Compile the Go program:
    • go build -o kubectl-clone ./pkg/
    1. Install the Plugin: Move the executable to a directory in your PATH:
    • mv kubectl-clone /usr/local/bin/

    Ensure the file is executable:

    • chmod +x /usr/local/bin/kubectl-clone
    1. Verify the Plugin Installation: Test the plugin by running:
    • kubectl clone --help

    You should see the usage information for the kubectl-clone plugin.

    Usage Examples

    1. Clone a Deployment from One Cluster to Another:
    • kubectl clone --source-cluster c-abc123 --type deployment --name nginx-deployment --target-cluster c-def456 --new-name nginx-deployment-clone
    1. Clone a Service into Another Namespace and Modify Labels:


    Dartboard TUI by IValentin

    Description

    Our scalability and performance testing swiss-army knife tool Dartboard is a major WIP so why not add more scope creep? Dartboard is a cli tool which enables users to:

    • Define a "Dart" config file as YAML which defines the various components to be created/setup when Dartboard runs its commands
    • Spin up infrastructure utilizing opentofu/terraform providers
    • Setup K3s or RKE2 clusters on the newly created infrastructure
    • Deploy Rancher (with or without downstream cluster), rancher-monitoring (Grafana + Prometheus)
    • Create resources in-bulk within the newly created Rancher cluster (ConfigMaps, Secrets, Users, Roles, etc.)
    • Run various performance and scalability tests via k6
    • Export/Import various tracked metrics (WIP)

    Given all these features (and the features to come), it can be difficult to onboard and transfer knowledge of the tool. With a TUI, Dartboard's usage complexity can be greatly reduced!

    Goals

    • Create a TUI for Dartboard's "subcommands"
    • Gain more familiarity with Dartboard and create a more user-friendly interface to enable others to use it
    • Stretch Create a TUI workflow for generating a Dart file

    Resources

    https://github.com/charmbracelet/bubbletea


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Setup Kanidm as OIDC provider on Kubernetes by jkuzilek

    Description

    I am planning to upgrade my homelab Kubernetes cluster to the next level and need an OIDC provider for my services, including K8s itself.

    Goals

    • Successfully configure and deploy Kanidm on homelab cluster
    • Integrate with K8s auth
    • Integrate with other services (Envoy Gateway, Container Registry, future deployment of Forgejo?)

    Resources


    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goal for this Hackweek

    Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    https://github.com/rancher/terraform-provider-rancher2 https://github.com/rancher/tf-rancher-up


    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Install Uyuni on Kubernetes in cloud-native way by cbosdonnat

    Description

    For now installing Uyuni on Kubernetes requires running mgradm on a cluster node... which is not what users would do in the Kubernetes world. The idea is to implement an installation based only on helm charts and probably an operator.

    Goals

    Install Uyuni from Rancher UI.

    Resources