The world is changing. A mouse got lose and fell off the discworld. Consequently the elephants got scared and hopped off Great A'Tuin's back. As luck would have it a gigantic crab with four gophers on its back took its place.

Project Description

The world crab is a static meta blog generator aka a planet. Imagine you have a bunch of static blogs made with Hugo and you're looking for a way to aggregate those blogs easily without worrying too much about the details and without duplicating metadata. If this sounds too good to be true, the world crab is for you!

Goal for this Hackweek

  • Implement missing features needed by QA Tarantula
  • Rendering without hugo
  • Surface authors

Resources

Looking for hackers with the skills:

rust rss

This project is part of:

Hack Week 21 Hack Week 22

Activity

  • over 3 years ago: kalikiana started this project.
  • over 3 years ago: amanzini liked this project.
  • over 3 years ago: cdywan added keyword "rss" to this project.
  • over 3 years ago: cdywan added keyword "rust" to this project.
  • over 3 years ago: cdywan originated this project.

  • Comments

    • cdywan
      over 3 years ago by cdywan | Reply

      • https://github.com/kalikiana/worldcrab/pull/5 Better config file handling, and also test coverage for command-line options
      • https://github.com/kalikiana/worldcrab/pull/6 Draft for html rendering

    • kalikiana
      over 3 years ago by kalikiana | Reply

      • https://github.com/kalikiana/worldcrab/pull/7 Rework unit test for git repo to stop relying on a live remote

    • kalikiana
      over 3 years ago by kalikiana | Reply

      • https://github.com/kalikiana/worldcrab/pull/8 Test pulling in new changes from git
      • https://github.com/kalikiana/worldcrab/pull/9 Better assertions for processed markdown in unit tests

    • kalikiana
      over 3 years ago by kalikiana | Reply

    Similar Projects

    RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso

    Description

    The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.

    We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.

    This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.

    The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.

    Goals

    The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.

    Key goals for the week:

    1. Analyze & Identify: Dive into the SUSE/rmt Ruby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions).
    2. Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
    3. Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like rb-sys or magnus.
    4. Benchmark: Create a benchmarking script (e.g., using k6, ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients.
    5. Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.

    Resources

    • RMT Source Code (Ruby):
      • https://github.com/SUSE/rmt
    • RMT Documentation:
      • https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
    • Tooling & Stacks:
      • RMT/Ruby development environment (for running the base RMT)
      • Rust development environment (rustup, cargo)
    • Potential Integration Libraries:
      • rb-sys: https://github.com/oxidize-rb/rb-sys
      • Magnus: https://github.com/matsadler/magnus
    • Benchmarking Tools:
      • k6 (https://k6.io/)
      • ab (ApacheBench)


    AI-Powered Unit Test Automation for Agama by joseivanlopez

    The Agama project is a multi-language Linux installer that leverages the distinct strengths of several key technologies:

    • Rust: Used for the back-end services and the core HTTP API, providing performance and safety.
    • TypeScript (React/PatternFly): Powers the modern web user interface (UI), ensuring a consistent and responsive user experience.
    • Ruby: Integrates existing, robust YaST libraries (e.g., yast-storage-ng) to reuse established functionality.

    The Problem: Testing Overhead

    Developing and maintaining code across these three languages requires a significant, tedious effort in writing, reviewing, and updating unit tests for each component. This high cost of testing is a drain on developer resources and can slow down the project's evolution.

    The Solution: AI-Driven Automation

    This project aims to eliminate the manual overhead of unit testing by exploring and integrating AI-driven code generation tools. We will investigate how AI can:

    1. Automatically generate new unit tests as code is developed.
    2. Intelligently correct and update existing unit tests when the application code changes.

    By automating this crucial but monotonous task, we can free developers to focus on feature implementation and significantly improve the speed and maintainability of the Agama codebase.

    Goals

    • Proof of Concept: Successfully integrate and demonstrate an authorized AI tool (e.g., gemini-cli) to automatically generate unit tests.
    • Workflow Integration: Define and document a new unit test automation workflow that seamlessly integrates the selected AI tool into the existing Agama development pipeline.
    • Knowledge Sharing: Establish a set of best practices for using AI in code generation, sharing the learned expertise with the broader team.

    Contribution & Resources

    We are seeking contributors interested in AI-powered development and improving developer efficiency. Whether you have previous experience with code generation tools or are eager to learn, your participation is highly valuable.

    If you want to dive deep into AI for software quality, please reach out and join the effort!

    • Authorized AI Tools: Tools supported by SUSE (e.g., gemini-cli)
    • Focus Areas: Rust, TypeScript, and Ruby components within the Agama project.

    Interesting Links


    Modal editor in Rust by acervesato

    Description

    To write a modal editor in Rust inspired by vim and having the following features:

    • vim basic motion commands + insert/visual mode
    • multiple buffers with tabs
    • status bar

    It should be written for terminal only using ratatui library and crossterm.

    Goals

    The goal is to start with a functional prototype that can be extended in the future with the following features (in random order):

    • treesitter support + styles
    • fuzzy finder
    • grep finder
    • integration with git
    • tree viewer
    • internal terminal floating window
    • mailing list workflow integration

    Resources