Let's do what we can to get https://github.com/openSUSE/fuel-ignition running as ignite.opensuse.org respectively ignite-stage.opensuse.org

Project Description

Ignition and combustion are currently one of top picks for first-boot configuration used in MicrOS, SLE Micro, Leap Micro etc ... We'd like to have fuel-ignition, a client-side generator of ignition USB images hosted as ignite-stage.opensuse.org and optionally ignite.opensuse.org if we can make it. opensuse-heroes ticket is here https://progress.opensuse.org/issues/111452

This especially help new users, who might struggle with the new way to deploy images. See https://www.youtube.com/watch?v=ft8UVx9elKc

Goal for this Hackweek

  • Build official container for fuel-ignition probably within https://build.opensuse.org/project/show/openSUSE:infrastructure

  • Co-operate with opensuse-admin team to deploy it under ignite-stage.opensuse.org container style deployment was agreed with Bernhard and cboltz on openSUSE Conference 2022 in Z-Bau

Resources

  • Somebody who wants to build container for the first time
  • Somebody from openSUSE heroes to help deploy it and do port forwarding from e.g. 3000 in container to 80 on host poo#111452

Looking for hackers with the skills:

heroes containers ignition combustion opensuseheroes opensuse nodejs

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: malcolmlewis joined this project.
  • over 2 years ago: jzerebecki liked this project.
  • over 2 years ago: dgedon liked this project.
  • over 2 years ago: lkocman added keyword "nodejs" to this project.
  • over 2 years ago: lkocman started this project.
  • over 2 years ago: lkocman added keyword "heroes" to this project.
  • over 2 years ago: lkocman added keyword "containers" to this project.
  • over 2 years ago: lkocman added keyword "ignition" to this project.
  • over 2 years ago: lkocman added keyword "combustion" to this project.
  • over 2 years ago: lkocman added keyword "opensuseheroes" to this project.
  • over 2 years ago: lkocman added keyword "opensuse" to this project.
  • over 2 years ago: lkocman originated this project.

  • Comments

    • malcolmlewis
      over 2 years ago by malcolmlewis | Reply

      @lkocman Hi, I'm not sure of the process here add-emoji I can liaise with the Heroes folks to set up the OBS container if needed?

    • malcolmlewis
      over 2 years ago by malcolmlewis | Reply

      It seems to me the container setup is needed on openSUSE:infrastructure first, then can branch and work on the container build?

    • malcolmlewis
      over 2 years ago by malcolmlewis | Reply

      Hi So trying to build a container is umm frustrating add-emoji

      Following this: https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.build_containers.html

      And searching here for nodejs https://registry.opensuse.org/cgi-bin/cooverview?srch_term=project%3D%5E%28%3F%21%28open%29%3FSUSE%3A%7Ckubic%3A%7Chome%3A%29

      I expected the following to work on OBS?

      FROM devel/bci/sle-15-sp3/images/bci/nodejs

      Changed from;

      FROM registry.suse.com/bci/nodejs

      Or is there another way to pull nodejs from the Dockerfile or another container?

    Similar Projects

    ClusterOps - Easily install and manage your personal kubernetes cluster by andreabenini

    Description

    ClusterOps is a Kubernetes installer and operator designed to streamline the initial configuration and ongoing maintenance of kubernetes clusters. The focus of this project is primarily on personal or local installations. However, the goal is to expand its use to encompass all installations of Kubernetes for local development purposes.
    It simplifies cluster management by automating tasks and providing just one user-friendly YAML-based configuration config.yml.

    Overview

    • Simplified Configuration: Define your desired cluster state in a simple YAML file, and ClusterOps will handle the rest.
    • Automated Setup: Automates initial cluster configuration, including network settings, storage provisioning, special requirements (for example GPUs) and essential components installation.
    • Ongoing Maintenance: Performs routine maintenance tasks such as upgrades, security updates, and resource monitoring.
    • Extensibility: Easily extend functionality with custom plugins and configurations.
    • Self-Healing: Detects and recovers from common cluster issues, ensuring stability, idempotence and reliability. Same operation can be performed multiple times without changing the result.
    • Discreet: It works only on what it knows, if you are manually configuring parts of your kubernetes and this configuration does not interfere with it you can happily continue to work on several parts and use this tool only for what is needed.

    Features

    • distribution and engine independence. Install your favorite kubernetes engine with your package manager, execute one script and you'll have a complete working environment at your disposal.
    • Basic config approach. One single config.yml file with configuration requirements (add/remove features): human readable, plain and simple. All fancy configs managed automatically (ingress, balancers, services, proxy, ...).
    • Local Builtin ContainerHub. The default installation provides a fully configured ContainerHub available locally along with the kubernetes installation. This configuration allows the user to build, upload and deploy custom container images as they were provided from external sources. Internet public sources are still available but local development can be kept in this localhost server. Builtin ClusterOps operator will be fetched from this ContainerHub registry too.
    • Kubernetes official dashboard installed as a plugin, others planned too (k9s for example).
    • Kubevirt plugin installed and properly configured. Unleash the power of classic virtualization (KVM+QEMU) on top of Kubernetes and manage your entire system from there, libvirtd and virsh libs are required.
    • One operator to rule them all. The installation script configures your machine automatically during installation and adds one kubernetes operator to manage your local cluster. From there the operator takes care of the cluster on your behalf.
    • Clean installation and removal. Just test it, when you are done just use the same program to uninstall everything without leaving configs (or pods) behind.

    Planned features (Wishlist / TODOs)

    • Containerized Data Importer (CDI). Persistent storage management add-on for Kubernetes to provide a declarative way of building and importing Virtual Machine Disks on PVCs for


    Enable the containerized Uyuni server to run on different host OS by j_renner

    Description

    The Uyuni server is provided as a container, but we still require it to run on Leap Micro? This is not how people expect to use containerized applications, so it would be great if we tested other host OSs and enabled them by providing builds of necessary tools for (e.g. mgradm). Interesting candidates should be:

    • openSUSE Leap
    • Cent OS 7
    • Ubuntu
    • ???

    Goals

    Make it really easy for anyone to run the Uyuni containerized server on whatever OS they want (with support for containers of course).


    Port the classic browser game HackTheNet to PHP 8 by dgedon

    Description

    The classic browser game HackTheNet from 2004 still runs on PHP 4/5 and MySQL 5 and needs a port to PHP 8 and e.g. MariaDB.

    Goals

    • Port the game to PHP 8 and MariaDB 11
    • Create a container where the game server can simply be started/stopped

    Resources

    • https://github.com/nodeg/hackthenet


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    ADS-B receiver with MicroOS by epaolantonio

    I would like to put one of my spare Raspberry Pis to good use, and what better way to see what flies above my head at any time? add-emoji

    There are various ready-to-use distros already set-up to provide feeder data to platforms like Flightradar24, ADS-B Exchange, FlightAware etc... The goal here would be to do it using MicroOS as a base and containerized decoding of ADS-B data (via tools like dump1090) and web frontend (tar1090).

    Goals

    • Create a working receiver using MicroOS as a base, and containers based on Tumbleweed
    • Make it easy to install
    • Optimize for maximum laziness (i.e. it should take care of itself with minimum intervention)

    Resources

    • 1x Small Board Computer capable of running MicroOS
    • 1x RTL2832U DVB-T dongle
    • 1x MicroSD card
    • https://github.com/antirez/dump1090
    • https://github.com/flightaware/dump1090 (dump1090 fork by FlightAware)
    • https://github.com/wiedehopf/tar1090

    Project status (2024-11-22)

    So I'd say that I'm pretty satisfied with how it turned out. I've packaged readsb (as a replacement for dump1090), tar1090, tar1090-db and mlat-client (not used yet).

    Current status:

    • Able to set-up a working receiver using combustion+ignition (web app based on Fuel Ignition)
    • Able to feed to various feeds using the Beast protocol (Airplanes.live, ADSB.fi, ADSB.lol, ADSBExchange.com, Flyitalyadsb.com, Planespotters.net)
    • Able to feed to Flightradar24 (initial-setup available but NOT tested! I've only tested using a key I already had)
    • Local web interface (tar1090) to easily visualize the results
    • Cockpit pre-configured to ease maintenance

    What's missing:

    • MLAT (Multilateration) support. I've packaged mlat-client already, but I have to wire it up
    • FlightAware support

    Give it a go at https://g7.github.io/adsbreceiver/ !

    Project links


    New migration tool for Leap by lkocman

    Update

    I will call a meeting with other interested people at 11:00 CET https://meet.opensuse.org/migrationtool

    Description

    SLES 16 plans to have no yast tool in it. Leap 16 might keep some bits, however, we need a new tool for Leap to SLES migration, as this was previously handled by a yast2-migration-sle

    Goals

    A tool able to migrate Leap 16 to SLES 16, I would like to cover also other scenarios within openSUSE, as in many cases users would have to edit repository files manually.

    • Leap -> Leap n+1 (minor and major version updates)
    • Leap -> SLES docs
    • Leap -> Tumbleweed
    • Leap -> Slowroll
    • Leap Micro -> Leap Micro n+1 (minor and major version updates)
    • Leap Micro -> MicroOS

    Hackweek 24 update

    Marcela and I were working on the project from Brno coworking as well as finalizing pieces after the hackweek. We've tested several migration scenarios and it works. But it needs further polishing and testing.

    Projected was renamed to opensuse-migration-tool and was submitted to devel project https://build.opensuse.org/requests/1227281

    Repository

    https://github.com/openSUSE/opensuse-migration-tool

    Out of scope is any migration to an immutable system. I know Richard already has some tool for that.

    Resources

    Tracker for yast stack reduction code-o-o/leap/features#173 YaST stack reduction


    Enlightenment in Leap 16 by simotek

    Description

    Get the Enlightenment stack + X11 building and running on the Leap 16 codebase.

    Goals

    • Get enlightenment / terminology compiling for Leap 16
    • Test that they are running correctly in a Virtual Machine.

    Resources


    Digital art wallpapers for openSUSE Leap and Tumbleweed by lkocman

    Description

    We've enrolled set of new wallpapers to both Leap 16 and Tumbleweed as part of https://news.opensuse.org/2024/10/26/leap-tw-get-makeovers/

    We've previewed digital art wallpapers which were not part of the initial drop. I'd like to spend time on hackweek to finialize my current Taipei (mountains) and Mauritius digital art wallpapers.

    Goals

    Finalize existing two digital art wallpapers for Leap and Tumbleweed https://github.com/openSUSE/branding/issues/155 Make them available as part of leap16 dir in https://github.com/openSUSE/wallpapers and update (This makes is available to Tumbleweed users as well). Update https://build.opensuse.org/package/show/X11:common:Factory/wallpapers-openSUSE-extra && Leap:16.0 && Factory.

    Resources

    https://github.com/openSUSE/branding/issues/155 The mauritius draft can be found in https://github.com/lkocman/geo-wallpapers


    Update Haskell ecosystem in Tumbleweed to GHC-9.10.x by psimons

    Description

    We are currently at GHC-9.8.x, which a bit old. So I'd like to take a shot at the latest version of the compiler, GHC-9.10.x. This is gonna be interesting because the new version requires major updates to all kinds of libraries and base packages, which typically means patching lots of packages to make them build again.

    Goals

    Have working builds of GHC-9.10.x and the required Haskell packages in 'devel:languages:haskell` so that we can compile:

    • git-annex
    • pandoc
    • xmonad
    • cabal-install

    Resources

    • https://build.opensuse.org/project/show/devel:languages:haskell/
    • https://github.com/opensuse-haskell/configuration/
    • #discuss-haskell
    • https://www.twitch.tv/peti343


    New openSUSE-welcome by lkocman

    Project Description

    Let's revisit our existing openSUSE welcome app.

    My goal was to show Leap 16 in a new coat. Welcome app adds to the first time use experience. We've recently added donation button to our existing welcome.

    Some things that I recently wanted to address were EOL and possibly upgrade notification.

    I've already done some experiments with mint welcome app, but not sure if it's better than the existing one.

    There is also a PR to rework existing app https://github.com/openSUSE/openSUSE-welcome/pull/36 (this should be considered as an option too)

    Goal for this Hackweek

    New welcome app, possibly with EOL notification for Leap.

    1) Welcome application(s) with (rebrand changes) maintained under github.com/openSUSE

    2) Application is submitted to openSUSE:Factory && openSUSE:Leap:16.0

    3) Updated needles in openQA (probably post hackweek)

    Resources

    Reddit discussion about the best welcome app out there.

    Github repo for the current welcome app.


    obs-service-vendor_node_modules by cdimonaco

    Description

    When building a javascript package for obs, one option is to use https://github.com/openSUSE/obs-service-node_modules as source service to get the project npm dependencies available for package bulding.

    obs-service-vendornodemodules aims to be a source service that vendors npm dependencies, installing them with npm install (optionally only production ones) and then creating a tar package of the installed dependencies.

    The tar will be used as source in the package building definitions.

    Goals

    • Create an obs service package that vendors the npm dependencies as tar archive.
    • Maybe add some macros to unpack the vendor package in the specfiles

    Resources