Project Description

ostatus is a command line tool designed to answer questions like "what deviations has my system from a fresh installed system", at least in term of installed packages.

Internally uses libsolv to simulate a fresh installation, based on the installed system roles and packages. The package and pattern list is later compared with the current system, to evaluate differences.

It also generates a hash key that can be used to compare systems. If two systems has the same key, they are considered equivalent, even if they come from different installation history.

Goal for this Hackweek

Beside pushing forward the project, I want to contribute a bit more in librpm.rs, that is a Rust binding for librpm, that is internally used by ostatus itself.

Resources

  • ostatus: https://github.com/aplanas/ostatus
  • librpm.rs: https://github.com/rpm-software-management/librpm.rs

Looking for hackers with the skills:

rust

This project is part of:

Hack Week 21

Activity

  • over 2 years ago: cdywan liked this project.
  • over 2 years ago: jzerebecki left this project.
  • over 2 years ago: jzerebecki added keyword "rust" to this project.
  • over 2 years ago: jzerebecki joined this project.
  • over 2 years ago: jzerebecki liked this project.
  • over 2 years ago: lnussel liked this project.
  • over 2 years ago: aplanas started this project.
  • over 2 years ago: aplanas originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Kanidm: A safe and modern IDM system by firstyear

    Kanidm is an IDM system written in Rust for modern systems authentication. The github repo has a detailed "getting started" on the readme.

    Kanidm Github

    In addition Kanidm has spawn a number of adjacent projects in the Rust ecosystem such as LDAP, Kerberos, Webauthn, and cryptography libraries.

    In this hack week, we'll be working on Quokca, a certificate authority that supports PKCS11/TPM storage of keys, issuance of PIV certificates, and ACME without the feature gatekeeping implemented by other CA's like smallstep.

    For anyone who wants to participate in Kanidm, we have documentation and developer guides which can help.

    I'm happy to help and share more, so please get in touch!


    Implement a CLI tool for Trento - trentoctl by nkopliku

    Description

    Implement a trentoctl CLI for interacting with a trento installation

    Goals

    • learn rust
    • implement an initial trentoctl tool to enhance trento automation
    • have fun

    Resources

    trento rust. TUIs listed on this other hackweek project Hack on rich terminal user interfaces


    Write an url shortener in Rust (And learn in the way) by szarate

    So I have 469.icu :), it's currently doing nothing... (and for sale) but in the meantime, I'd like to write an url shortener from scratch and deploy it on my own server

    https://github.com/foursixnine/url-manager-rs/tree/main


    SMB3 Server written entirely in Rust by dmulder

    Description

    Given the number of bugs frequently discovered in the Samba code caused by memory issues, it makes sense to re-write the smbd service purely in Rust code. Meanwhile, it would be wise to abandon backwards compatibility here with insecure protocol versions, and simply implement the SMB3 spec.

    Goals

    Get a simple server up and running and get it merged into upstream Samba (which now has Rust build support).

    Resources


    Agama installer on-line demo by lslezak

    Description

    The Agama installer provides a quite complex user interface. We have some screenshots on the web page but as it is basically a web application it would be nice to have some on-line demo where users could click and check it live.

    The problem is that the Agama server directly accesses the hardware (storage probing) and loads installation repositories. We cannot easily mock this in the on-line demo so the easiest way is to have just a read-only demo. You could explore the configuration options but you could not change anything, all changes would be ignored.

    The read-only demo would be a bit limited but I still think it would be useful for potential users get the feeling of the new Agama installer and get familiar with it before using in a real installation.

    As a proof of concept I already created this on-line demo.

    The implementation basically builds Agama in two modes - recording mode where it saves all REST API responses and replay mode where it for the REST API requests returns the previously recorded responses. Recording in the browser is inconvenient and error prone, there should be some scripting instead (see below).

    Goals

    • Create an Agama on-line demo which can be easily tested by users
    • The Agama installer is still in alpha phase and in active development, the online demo needs to be easily rebuilt with the latest Agama version
    • Ideally there should be some automation so the demo page is rebuilt automatically without any developer interactions (once a day or week?)

    TODO

    • Use OpenAPI to get all Agama REST API endpoints, write a script which queries all the endpoints automatically and saves the collected data to a file (see this related PR).
    • Write a script for starting an Agama VM (use libvirt/qemu?), the script should ensure we always use the same virtual HW so if we need to dump the latest REST API state we get the same (or very similar data). This should ensure the demo page does not change much regarding the storage proposal etc...
    • Fix changing the product, currently it gets stuck after clicking the "Select" button.
    • Move the mocking data (the recorded REST API responses) outside the Agama sources, it's too big and will be probably often updated. To avoid messing the history keep it in a separate GitHub repository
    • Allow changing the UI language
    • Display some note (watermark) in the page so it is clear it is a read-only demo (probably with some version or build date to know how old it is)
    • Automation for building new demo page from the latest sources. There should be some check which ensures the recorded data still matches the OpenAPI specification.

    Changing the UI language

    This will be quite tricky because selecting the proper translation file is done on the server side. We would probably need to completely re-implement the logic in the browser side and adapt the server for that.

    Also some REST API responses contain translated texts (storage proposal, pattern names in software). We would need to query the respective endpoints in all supported languages and return the correct response in runtime according to the currently selected language.

    Resources