UYUNI-CLI

This a unified CLI tool for uyuni which aims to provide a single pane of glass to access all the existing tools in this project. The github repository contains a POC with support for a limited number of tools.

Goal for this Hackweek

  • Add support for all existing tools
  • Package as RPM to allow easier installation
  • Support for translation in the description text
  • Find a way to provide help information in case a tool doesn't have it
  • Test if it's possible to integrate some internal tool with Cobra framework

sources: https://github.com/rjmateus/uyuni-cli

Resources

Looking for hackers with the skills:

uyuni

This project is part of:

Hack Week 20

Activity

  • almost 5 years ago: j_renner liked this project.
  • almost 5 years ago: RDiasMateus added keyword "uyuni" to this project.
  • almost 5 years ago: pagarcia liked this project.
  • almost 5 years ago: juliogonzalezgil liked this project.
  • almost 5 years ago: dancermak liked this project.
  • almost 5 years ago: ories liked this project.
  • almost 5 years ago: RDiasMateus started this project.
  • almost 5 years ago: RDiasMateus originated this project.

  • Comments

    • RDiasMateus
      almost 5 years ago by RDiasMateus | Reply

      packageing the uyuni-cli project for opensuse leap 15.2: https://build.opensuse.org/project/show/home:RDiasMateus:uyuni-cli

    Similar Projects

    mgr-ansible-ssh - Intelligent, Lightweight CLI for Distributed Remote Execution by deve5h

    Description

    By the end of Hack Week, the target will be to deliver a minimal functional version 1 (MVP) of a custom command-line tool named mgr-ansible-ssh (a unified wrapper for BOTH ad-hoc shell & playbooks) that allows operators to:

    1. Execute arbitrary shell commands on thousand of remote machines simultaneously using Ansible Runner with artifacts saved locally.
    2. Pass runtime options such as inventory file, remote command string/ playbook execution, parallel forks, limits, dry-run mode, or no-std-ansible-output.
    3. Leverage existing SSH trust relationships without additional setup.
    4. Provide a clean, intuitive CLI interface with --help for ease of use. It should provide consistent UX & CI-friendly interface.
    5. Establish a foundation that can later be extended with advanced features such as logging, grouping, interactive shell mode, safe-command checks, and parallel execution tuning.

    The MVP should enable day-to-day operations to efficiently target thousands of machines with a single, consistent interface.

    Goals

    Primary Goals (MVP):

    Build a functional CLI tool (mgr-ansible-ssh) capable of executing shell commands on multiple remote hosts using Ansible Runner. Test the tool across a large distributed environment (1000+ machines) to validate its performance and reliability.

    Looking forward to significantly reducing the zypper deployment time across all 351 RMT VM servers in our MLM cluster by eliminating the dependency on the taskomatic service, bringing execution down to a fraction of the current duration. The tool should also support multiple runtime flags, such as:

    mgr-ansible-ssh: Remote command execution wrapper using Ansible Runner
    
    Usage: mgr-ansible-ssh [--help] [--version] [--inventory INVENTORY]
                       [--run RUN] [--playbook PLAYBOOK] [--limit LIMIT]
                       [--forks FORKS] [--dry-run] [--no-ansible-output]
    
    Required Arguments
    --inventory, -i      Path to Ansible inventory file to use
    
    Any One of the Arguments Is Required
    --run, -r            Execute the specified shell command on target hosts
    --playbook, -p       Execute the specified Ansible playbook on target hosts
    
    Optional Arguments
    --help, -h           Show the help message and exit
    --version, -v        Show the version and exit
    --limit, -l          Limit execution to specific hosts or groups
    --forks, -f          Number of parallel Ansible forks
    --dry-run            Run in Ansible check mode (requires -p or --playbook)
    --no-ansible-output  Suppress Ansible stdout output
    

    Secondary/Stretched Goals (if time permits):

    1. Add pretty output formatting (success/failure summary per host).
    2. Implement basic logging of executed commands and results.
    3. Introduce safety checks for risky commands (shutdown, rm -rf, etc.).
    4. Package the tool so it can be installed with pip or stored internally.

    Resources

    Collaboration is welcome from anyone interested in CLI tooling, automation, or distributed systems. Skills that would be particularly valuable include:

    1. Python especially around CLI dev (argparse, click, rich)


    Enhance setup wizard for Uyuni by PSuarezHernandez

    Description

    This project wants to enhance the intial setup on Uyuni after its installation, so it's easier for a user to start using with it.

    Uyuni currently uses "uyuni-tools" (mgradm) as the installation entrypoint, to trigger the installation of Uyuni in the given host, but does not really perform an initial setup, for instance:

    • user creation
    • adding products / channels
    • generating bootstrap repos
    • create activation keys
    • ...

    Goals

    • Provide initial setup wizard as part of mgradm uyuni installation

    Resources


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.

    Nah, let's be honest add-emoji AI helped a lot to vibe code a good part of the Ruby methods of the Test framework, moving them to Typescript, along with the migration from Capybara to Playwright. I've been using "Cline" as plugin for WebStorm IDE, using Gemini API behind it.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakiness.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources


    Uyuni Saltboot rework by oholecek

    Description

    When Uyuni switched over to the containerized proxies we had to abandon salt based saltboot infrastructure we had before. Uyuni already had integration with a Cobbler provisioning server and saltboot infra was re-implemented on top of this Cobbler integration.

    What was not obvious from the start was that Cobbler, having all it's features, woefully slow when dealing with saltboot size environments. We did some improvements in performance, introduced transactions, and generally tried to make this setup usable. However the underlying slowness remained.

    Goals

    This project is not something trying to invent new things, it is just finally implementing saltboot infrastructure directly with the Uyuni server core.

    Instead of generating grub and pxelinux configurations by Cobbler for all thousands of systems and branches, we will provide a GET access point to retrieve grub or pxelinux file during the boot:

    /saltboot/group/grub/$fqdn and similar for systems /saltboot/system/grub/$mac

    Next we adapt our tftpd translator to query these points when asked for default or mac based config.

    Lastly similar thing needs to be done on our apache server when HTTP UEFI boot is used.

    Resources


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources

    Outcome