There are couple of projects I work on, which need my attention and putting them to shape:

Goal for this Hackweek

  • Put M2Crypto into better shape (most issues closed, all pull requests processed)
  • More fun to learn jujutsu
  • Play more with Gemini, how much it help (or not).
  • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.

Looking for hackers with the skills:

vim python openssl jujutsu ai

This project is part of:

Hack Week 20 Hack Week 22 Hack Week 25

Activity

  • 24 days ago: vizhestkov liked this project.
  • 30 days ago: mcepl added keyword "ai" to this project.
  • 30 days ago: mcepl added keyword "jujutsu" to this project.
  • 30 days ago: mcepl removed keyword neovim from this project.
  • 30 days ago: mcepl removed keyword lua from this project.
  • almost 3 years ago: asmorodskyi joined this project.
  • almost 3 years ago: msaquib liked this project.
  • almost 3 years ago: msaquib joined this project.
  • over 4 years ago: mstrigl liked this project.
  • over 4 years ago: kstreitova liked this project.
  • over 4 years ago: mcepl started this project.
  • over 4 years ago: mcepl added keyword "vim" to this project.
  • over 4 years ago: mcepl added keyword "neovim" to this project.
  • over 4 years ago: mcepl added keyword "lua" to this project.
  • over 4 years ago: mcepl added keyword "python" to this project.
  • over 4 years ago: mcepl added keyword "openssl" to this project.
  • over 4 years ago: mcepl originated this project.

  • Comments

    • mcepl
      almost 3 years ago by mcepl | Reply

      • rope-based LSP server exists https://github.com/python-rope/pylsp-rope
      • spellsitter as a standalone hunspell-based spellchecker for nvim has been abandoned

    • asmorodskyi
      almost 3 years ago by asmorodskyi | Reply

      I have mid-level python knowledge and basic OBS knowledge and close to zero knowledge about encryption algorithms . I can try to fix some python-specific problem within package or try to do some packaging task in OBS . Can you recommend me something certain ?

      • mcepl
        almost 3 years ago by mcepl | Reply

        Yeah, it is too late now, but many of https://gitlab.com/m2crypto/m2crypto/-/issues don’t require much encryption knowledge.

    • mcepl
      almost 3 years ago by mcepl | Reply

      There was actually some progress on this project: master branch now passes the test suite through on all platforms (including Windows! hint: I don’t have one ;)), and the release of the next milestone is blocked just by https://gitlab.com/m2crypto/m2crypto/-/merge_requests/234 not passing through one test. If anybody knows anything about HTTP Transfer-Encoding: chunked and she is willing to help, I am all ears!

    Similar Projects

    Mail client with mailing list workflow support in Rust by acervesato

    Description

    To create a mail user interface using Rust programming language, supporting mailing list patches workflow. I know, aerc is already there, but I would like to create something simpler, without integrated protocols. Just a plain user interface that is using some crates to read and create emails which are fetched and sent via external tools.

    I already know Rust, but not the async support, which is needed in this case in order to handle events inside the mail folder and to send notifications.

    Goals

    • simple user interface in the style of aerc, with some vim keybindings for motions and search
    • automatic run of external tools (like mbsync) for checking emails
    • automatic run commands for notifications
    • apply patch set from ML
    • tree-sitter support with styles

    Resources

    • ratatui: user interface (https://ratatui.rs/)
    • notify: folder watcher (https://docs.rs/notify/latest/notify/)
    • mail-parser: parser for emails (https://crates.io/crates/mail-parser)
    • mail-builder: create emails in proper format (https://docs.rs/mail-builder/latest/mail_builder/)
    • gitpatch: ML support (https://crates.io/crates/gitpatch)
    • tree-sitter-rust: support for mail format (https://crates.io/crates/tree-sitter)


    VimGolf Station by emiler

    Description

    VimGolf is a challenge game where the goal is to edit a given piece of text into a desired final form using as few keystrokes as possible in Vim.

    Some time ago, I built a rough portable station using a Raspberry Pi and a spare monitor. It was initially used to play VimGolf at the office and later repurposed for publicity at several events. This project aims to create a more robust version of that station and provide the necessary scripts and Ansible playbooks to make configuring your own VimGolf station easy.

    Goals

    • Refactor old existing scripts
    • Implement challenge selecion
    • Load external configuration files
    • Create Ansible playbooks
    • Publish on GitHub

    Resources

    • https://www.vimgolf.com/
    • https://github.com/dstein64/vimgolf
    • https://github.com/igrigorik/vimgolf


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)


    Improve chore and screen time doc generator script `wochenplaner` by gniebler

    Description

    I wrote a little Python script to generate PDF docs, which can be used to track daily chore completion and screen time usage for several people, with one page per person/week.

    I named this script wochenplaner and have been using it for a few months now.

    It needs some improvements and adjustments in how the screen time should be tracked and how chores are displayed.

    Goals

    • Fix chore field separation lines
    • Change screen time tracking logic from "global" (week-long) to daily subtraction and weekly addition of remainders (more intuitive than current "weekly time budget method)
    • Add logic to fill in chore fields/lines, ideally with pictures, falling back to text.

    Resources

    tbd (Gitlab repo)


    Liz - Prompt autocomplete by ftorchia

    Description

    Liz is the Rancher AI assistant for cluster operations.

    Goals

    We want to help users when sending new messages to Liz, by adding an autocomplete feature to complete their requests based on the context.

    Example:

    • User prompt: "Can you show me the list of p"
    • Autocomplete suggestion: "Can you show me the list of p...od in local cluster?"

    Example:

    • User prompt: "Show me the logs of #rancher-"
    • Chat console: It shows a drop-down widget, next to the # character, with the list of available pod names starting with "rancher-".

    Technical Overview

    1. The AI agent should expose a new ws/autocomplete endpoint to proxy autocomplete messages to the LLM.
    2. The UI extension should be able to display prompt suggestions and allow users to apply the autocomplete to the Prompt via keyboard shortcuts.

    Resources

    GitHub repository


    Enhance git-sha-verify: A tool to checkout validated git hashes by gpathak

    Description

    git-sha-verify is a simple shell utility to verify and checkout trusted git commits signed using GPG key. This tool helps ensure that only authorized or validated commit hashes are checked out from a git repository, supporting better code integrity and security within the workflow.

    Supports:

    • Verifying commit authenticity signed using gpg key
    • Checking out trusted commits

    Ideal for teams and projects where the integrity of git history is crucial.

    Goals

    A minimal python code of the shell script exists as a pull request.

    The goal of this hackweek is to:

    • DONE: Add more unit tests
      • New and more tests can be added later
    • Partially DONE: Make the python code modular
    • DONE: Add code coverage if possible

    Resources


    Hackweek 25 from openSSL office in Brno, Czechia by lkocman

    Description

    Join South Moravian colleagues, Austrian friends, and local community members for Hackweek 25 at the openSSL corporation office in Brno, Czechia. This will be a relaxed and enjoyable in-person gathering where we can work on our Hackweek projects side by side, share ideas, help each other, and simply enjoy the atmosphere of hacking together for a week.

    Food, snacks, coffee will be available to keep everyone energized and happy throughout the week. We'd like to throw a small party on Tuesday.

    Goals

    • Bring together SUSE employees and community members from the South Moravian region and nearby Austria.
    • Create a friendly space for collaboration and creativity during Hackweek 25.
    • Support each other’s projects, exchange knowledge, and experiment freely.
    • Strengthen local connections and enjoy a refreshing break from remote work.

    Resources

    Report from Grand openning of the office

    Photos on google photos


    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Local AI assistant with optional integrations and mobile companion by livdywan

    Description

    Setup a local AI assistant for research, brainstorming and proof reading. Look into SurfSense, Open WebUI and possibly alternatives. Explore integration with services like openQA. There should be no cloud dependencies. Mobile phone support or an additional companion app would be a bonus. The goal is not to develop everything from scratch.

    User Story

    • Allison Average wants a one-click local AI assistent on their openSUSE laptop.
    • Ash Awesome wants AI on their phone without an expensive subscription.

    Goals

    • Evaluate a local SurfSense setup for day to day productivity
    • Test opencode for vibe coding and tool calling

    Timeline

    Day 1

    • Took a look at SurfSense and started setting up a local instance.
    • Unfortunately the container setup did not work well. Tho this was a great opportunity to learn some new podman commands and refresh my memory on how to recover a corrupted btrfs filesystem.

    Day 2

    • Due to its sheer size and complexity SurfSense seems to have triggered btrfs fragmentation. Naturally this was not visible in any podman-related errors or in the journal. So this took up much of my second day.

    Day 3

    Day 4

    • Context size is a thing, and models are not equally usable for vibe coding.
    • Through arduous browsing for ollama models I did find some like myaniu/qwen2.5-1m:7b with 1m but even then it is not obvious if they are meant for tool calls.

    Day 5

    • Whilst trying to make opencode usable I discovered ramalama which worked instantly and very well.

    Outcomes

    surfsense

    I could not easily set this up completely. Maybe in part due to my filesystem issues. Was expecting this to be less of an effort.

    opencode

    Installing opencode and ollama in my distrobox container along with the following configs worked for me.

    When preparing a new project from scratch it is a good idea to start out with a template.

    opencode.json

    ``` {


    SUSE Edge Image Builder MCP by eminguez

    Description

    Based on my other hackweek project, SUSE Edge Image Builder's Json Schema I would like to build also a MCP to be able to generate EIB config files the AI way.

    Realistically I don't think I'll be able to have something consumable at the end of this hackweek but at least I would like to start exploring MCPs, the difference between an API and MCP, etc.

    Goals

    • Familiarize myself with MCPs
    • Unrealistic: Have an MCP that can generate an EIB config file

    Resources

    Result

    https://github.com/e-minguez/eib-mcp

    I've extensively used antigravity and its agent mode to code this. This heavily uses https://hackweek.opensuse.org/25/projects/suse-edge-image-builder-json-schema for the MCP to be built.

    I've ended up learning a lot of things about "prompting", json schemas in general, some golang, MCPs and AI in general :)

    Example:

    Generate an Edge Image Builder configuration for an ISO image based on slmicro-6.2.iso, targeting x86_64 architecture. The output name should be 'my-edge-image' and it should install to /dev/sda. It should deploy a 3 nodes kubernetes cluster with nodes names "node1", "node2" and "node3" as: * hostname: node1, IP: 1.1.1.1, role: initializer * hostname: node2, IP: 1.1.1.2, role: agent * hostname: node3, IP: 1.1.1.3, role: agent The kubernetes version should be k3s 1.33.4-k3s1 and it should deploy a cert-manager helm chart (the latest one available according to https://cert-manager.io/docs/installation/helm/). It should create a user called "suse" with password "suse" and set ntp to "foo.ntp.org". The VIP address for the API should be 1.2.3.4

    Generates:

    ``` apiVersion: "1.0" image: arch: x86_64 baseImage: slmicro-6.2.iso imageType: iso outputImageName: my-edge-image kubernetes: helm: charts: - name: cert-manager repositoryName: jetstack


    SUSE Observability MCP server by drutigliano

    Description

    The idea is to implement the SUSE Observability Model Context Protocol (MCP) Server as a specialized, middle-tier API designed to translate the complex, high-cardinality observability data from StackState (topology, metrics, and events) into highly structured, contextually rich, and LLM-ready snippets.

    This MCP Server abstract the StackState APIs. Its primary function is to serve as a Tool/Function Calling target for AI agents. When an AI receives an alert or a user query (e.g., "What caused the outage?"), the AI calls an MCP Server endpoint. The server then fetches the relevant operational facts, summarizes them, normalizes technical identifiers (like URNs and raw metric names) into natural language concepts, and returns a concise JSON or YAML payload. This payload is then injected directly into the LLM's prompt, ensuring the final diagnosis or action is grounded in real-time, accurate SUSE Observability data, effectively minimizing hallucinations.

    Goals

    • Grounding AI Responses: Ensure that all AI diagnoses, root cause analyses, and action recommendations are strictly based on verifiable, real-time data retrieved from the SUSE Observability StackState platform.
    • Simplifying Data Access: Abstract the complexity of StackState's native APIs (e.g., Time Travel, 4T Data Model) into simple, semantic functions that can be easily invoked by LLM tool-calling mechanisms.
    • Data Normalization: Convert complex, technical identifiers (like component URNs, raw metric names, and proprietary health states) into standardized, natural language terms that an LLM can easily reason over.
    • Enabling Automated Remediation: Define clear, action-oriented MCP endpoints (e.g., execute_runbook) that allow the AI agent to initiate automated operational workflows (e.g., restarts, scaling) after a diagnosis, closing the loop on observability.

     Hackweek STEP

    • Create a functional MCP endpoint exposing one (or more) tool(s) to answer queries like "What is the health of service X?") by fetching, normalizing, and returning live StackState data in an LLM-ready format.

     Scope

    • Implement read-only MCP server that can:
      • Connect to a live SUSE Observability instance and authenticate (with API token)
      • Use tools to fetch data for a specific component URN (e.g., current health state, metrics, possibly topology neighbors, ...).
      • Normalize response fields (e.g., URN to "Service Name," health state DEVIATING to "Unhealthy", raw metrics).
      • Return the data as a structured JSON payload compliant with the MCP specification.

    Deliverables

    • MCP Server v0.1 A running Golang MCP server with at least one tool.
    • A README.md and a test script (e.g., curl commands or a simple notebook) showing how an AI agent would call the endpoint and the resulting JSON payload.

    Outcome A functional and testable API endpoint that proves the core concept: translating complex StackState data into a simple, LLM-ready format. This provides the foundation for developing AI-driven diagnostics and automated remediation.

    Resources

    • https://www.honeycomb.io/blog/its-the-end-of-observability-as-we-know-it-and-i-feel-fine
    • https://www.datadoghq.com/blog/datadog-remote-mcp-server
    • https://modelcontextprotocol.io/specification/2025-06-18/index
    • https://modelcontextprotocol.io/docs/develop/build-server

     Basic implementation

    • https://github.com/drutigliano19/suse-observability-mcp-server

    Results

    Successfully developed and delivered a fully functional SUSE Observability MCP Server that bridges language models with SUSE Observability's operational data. This project demonstrates how AI agents can perform intelligent troubleshooting and root cause analysis using structured access to real-time infrastructure data.

    Example execution


    Exploring Modern AI Trends and Kubernetes-Based AI Infrastructure by jluo

    Description

    Build a solid understanding of the current landscape of Artificial Intelligence and how modern cloud-native technologies—especially Kubernetes—support AI workloads.

    Goals

    Use Gemini Learning Mode to guide the exploration, surface relevant concepts, and structure the learning journey:

    • Gain insight into the latest AI trends, tools, and architectural concepts.
    • Understand how Kubernetes and related cloud-native technologies are used in the AI ecosystem (model training, deployment, orchestration, MLOps).

    Resources

    • Red Hat AI Topic Articles

      • https://www.redhat.com/en/topics/ai
    • Kubeflow Documentation

      • https://www.kubeflow.org/docs/
    • Q4 2025 CNCF Technology Landscape Radar report:

      • https://www.cncf.io/announcements/2025/11/11/cncf-and-slashdata-report-finds-leading-ai-tools-gaining-adoption-in-cloud-native-ecosystems/
      • https://www.cncf.io/wp-content/uploads/2025/11/cncfreporttechradar_111025a.pdf
    • Agent-to-Agent (A2A) Protocol

      • https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/