Project Description

I have all my photos on a private NAS running nextcloud.

This NAS has an ARM CPU and 1GB of RAM, which means I cannot run the face recognition plugin because it requires a GPU, 2 GB of RAM, and PDLib is not available for this arch (I know I could build it and package it ... but doesn't sound fun ;) )

However, I have a Coral TPU connected to a USB port (Thanks to my super friend Marc!):

https://coral.ai/products/accelerator

Where I could run Tensorflow Lite... you see where this is going, don't you?

Goal for this Hackweek

The goal is to run face recognition on the Coral TPU using tensorflow lite and then using the nextcloud API to tag the images.

Resources

Looking for hackers with the skills:

ml ai nextcloud

This project is part of:

Hack Week 20

Activity

  • 5 months ago: xcxienpai started this project.
  • about 4 years ago: stefannica liked this project.
  • about 4 years ago: vliaskovitis liked this project.
  • about 4 years ago: jordimassaguerpla left this project.
  • about 4 years ago: XGWang0 liked this project.
  • about 4 years ago: ories liked this project.
  • about 4 years ago: jordimassaguerpla started this project.
  • about 4 years ago: mbrugger liked this project.
  • about 4 years ago: jordimassaguerpla added keyword "ml" to this project.
  • about 4 years ago: jordimassaguerpla added keyword "ai" to this project.
  • about 4 years ago: jordimassaguerpla added keyword "nextcloud" to this project.
  • about 4 years ago: jordimassaguerpla originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Save pytorch models in OCI registries by jguilhermevanz

    Description

    A prerequisite for running applications in a cloud environment is the presence of a container registry. Another common scenario is users performing machine learning workloads in such environments. However, these types of workloads require dedicated infrastructure to run properly. We can leverage these two facts to help users save resources by storing their machine learning models in OCI registries, similar to how we handle some WebAssembly modules. This approach will save users the resources typically required for a machine learning model repository for the applications they need to run.

    Goals

    Allow PyTorch users to save and load machine learning models in OCI registries.

    Resources


    AI for product management by a_jaeger

    Description

    Learn about AI and how it can help myself

    What are the jobs that a PM does where AI can help - and how?

    Goals

    • Investigate how AI can help with different tasks
    • Check out different AI tools, which one is best for which job
    • Summarize learning

    Resources

    • Reading some blog posts by PMs that looked into it
    • Popular and less popular AI tools

    Work is done SUSE internally at https://confluence.suse.com/display/~a_jaeger/Hackweek+25+-+AI+for+a+PM and subpages.


    COOTWbot by ngetahun

    Project Description

    At SCC, we have a rotating task of COOTW (Commanding Office of the Week). This task involves responding to customer requests from jira and slack help channels, monitoring production systems and doing small chores. Usually, we have documentation to help the COOTW answer questions and quickly find fixes. Most of these are distributed across github, trello and SUSE Support documentation. The aim of this project is to explore the magic of LLMs and create a conversational bot.

    Goal for this Hackweek

    • Build data ingestion Data source:
      • SUSE KB docs
      • scc github docs
      • scc trello knowledge board
    • Test out new RAG architecture

    • https://gitlab.suse.de/ngetahun/cootwbot


    Research how LLMs could help to Linux developers and/or users by anicka

    Description

    Large language models like ChatGPT have demonstrated remarkable capabilities across a variety of applications. However, their potential for enhancing the Linux development and user ecosystem remains largely unexplored. This project seeks to bridge that gap by researching practical applications of LLMs to improve workflows in areas such as backporting, packaging, log analysis, system migration, and more. By identifying patterns that LLMs can leverage, we aim to uncover new efficiencies and automation strategies that can benefit developers, maintainers, and end users alike.

    Goals

    • Evaluate Existing LLM Capabilities: Research and document the current state of LLM usage in open-source and Linux development projects, noting successes and limitations.
    • Prototype Tools and Scripts: Develop proof-of-concept scripts or tools that leverage LLMs to perform specific tasks like automated log analysis, assisting with backporting patches, or generating packaging metadata.
    • Assess Performance and Reliability: Test the tools' effectiveness on real-world Linux data and analyze their accuracy, speed, and reliability.
    • Identify Best Use Cases: Pinpoint which tasks are most suitable for LLM support, distinguishing between high-impact and impractical applications.
    • Document Findings and Recommendations: Summarize results with clear documentation and suggest next steps for potential integration or further development.

    Resources

    • Local LLM Implementations: Access to locally hosted LLMs such as LLaMA, GPT-J, or similar open-source models that can be run and fine-tuned on local hardware.
    • Computing Resources: Workstations or servers capable of running LLMs locally, equipped with sufficient GPU power for training and inference.
    • Sample Data: Logs, source code, patches, and packaging data from openSUSE or SUSE repositories for model training and testing.
    • Public LLMs for Benchmarking: Access to APIs from platforms like OpenAI or Hugging Face for comparative testing and performance assessment.
    • Existing NLP Tools: Libraries such as spaCy, Hugging Face Transformers, and PyTorch for building and interacting with local LLMs.
    • Technical Documentation: Tutorials and resources focused on setting up and optimizing local LLMs for tasks relevant to Linux development.
    • Collaboration: Engagement with community experts and teams experienced in AI and Linux for feedback and joint exploration.