Back in the late 90s to early 2000s, SiS graphics chips were fairly common and found in many low-end devices. Today, the chips are still capable enough for simple graphics needs, but the graphics cards were on PCI and AGP buses. They are not usable in modern computers.

However, there exist USB-based graphics cards with a SiS 315 graphics chip. Those are around on Ebay et al [1] and easily usable with current computers. I already do have a driver for the old PCI-based SiS drivers and have long been struggling to find something useful to do with it. Converting it to serve USB devices would finally make it useful.

The goal for Hackweek 20 is to dedust my SiS driver and make it work with the 315 chip. That might take a bit or not; I'm not sure yet. Afterwards, the PCI I/O needs to be replaced with corresponding USB operations.

There are quite a few resources. My PCI driver is at [2]. For the USB devices, there exists an old userspace driver at [3] and a kernel stub at [4]. A general description of the device can be found in the Wayback Machine. [5]

If successful, the driver is supposed to be included in the upstream kernel.

[1] https://www.amazon.com/Tritton-TRI-UV100-SEE2-SVGA-Adapter/dp/B0003NFY1E

[2] https://gitlab.freedesktop.org/tzimmermann/linux/tree/sisvga

[3] https://gitlab.freedesktop.org/xorg/driver/xf86-video-sisusb

[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/usb/misc/sisusbvga?h=v5.11

[5] https://web.archive.org/web/20100610174735/http://www.winischhofer.eu/linuxsisusbvga.shtml

Looking for hackers with the skills:

kernel graphics drm usb

This project is part of:

Hack Week 20

Activity

  • almost 4 years ago: fos liked this project.
  • almost 4 years ago: ptesarik liked this project.
  • almost 4 years ago: tdz liked this project.
  • almost 4 years ago: tdz started this project.
  • almost 4 years ago: tdz added keyword "kernel" to this project.
  • almost 4 years ago: tdz added keyword "graphics" to this project.
  • almost 4 years ago: tdz added keyword "drm" to this project.
  • almost 4 years ago: tdz added keyword "usb" to this project.
  • almost 4 years ago: tdz originated this project.

  • Comments

    • tdz
      almost 4 years ago by tdz | Reply

      Day 1: Today I returned to my old driver for SiS PCI devices, which used to work 3yrs ago. Admittedly, the driver has bit-rotted quite a bit. I since updated it and added atomic modesetting. But I never really tested these changes. I can get the modes from the monitor via EDID functionality and the driver now detects the VRAM size correctly. My monitor reports a signal error, which indicates a bug when programming display resolution or timing. Fixing the driver is what I currently do. I'll also have to update it for the 315 chip. My hope is that I can then replace the PCI-bus functionality with USB and have a semi-working USB driver later this week.

    • tdz
      almost 4 years ago by tdz | Reply

      Day 2: I'm still working on getting the old PCI-based SiS driver to work correctly within the current kernel. I managed to get the display mode set and improved color-format settings. The display still looks wrong, but it's getting better. I give it one more day. No matter what the state is tomorrow, I'll push for USB support on Thursday.

    • tdz
      almost 4 years ago by tdz | Reply

      Day 3: The old driver uses the device VRAM directly. Today I converted it to DRM's SHMEM helpers. This is necessary to work with the USB device. SHMEM buffers will serve as shadow framebuffers that the driver can copy over USB into the device's memory.

    • tdz
      almost 4 years ago by tdz | Reply

      Day 4: I began to turn the PCI driver into a USB driver. Each PCI I/O operation has to be converted to a USB bulk message. The rsp code is already in the old kernel stub driver somewhere. The PCI device is a VGA card and therefore POSTed by the BIOS. For the USB device, I expect that there might be an additional POST process necessary. The old userspace driver should have the rsp code somewhere. No way I'll be able to finish all of this by the end of the week.

    • tdz
      almost 4 years ago by tdz | Reply

      Day 5: After some back and forth, I'm able to communicate with the USB device. No mode setting yet, just basic communication. I extracted this form the old sisusb driver in the kernel. I'll probably continue this project during the next hackweek.

    Similar Projects

    Linux on Cavium CN23XX cards by tsbogend

    Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.


    Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho

    Creator:
    Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
    Members:
    Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team

    Description

    Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.

    Goals

    Primary

    Start phasing out/deprecation of older SMB versions

    Secondary

    • Clean up of the code (with focus on the newer versions)
    • Update cifs-utils
    • Update documentation
    • Improve backport workflow (see below)

    Technical details

    Ideas for the implementation.

    • fs/smb/client/{old,new}.c to generate the respective modules
      • Maybe don't create separate folders? (re-evaluate as things progresses!)
    • Remove server->{ops,vals} if possible
    • Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
    • Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
    • Restructure multichannel
      • Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
      • Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
    • Authentication mechanisms
      • Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.


    Modernize ocfs2 by goldwynr

    Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.

    Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests


    RISC-V emulator in GLSL capable of running Linux by favogt

    Description

    There are already numerous ways to run Linux and some programs through emulation in a web browser (e.g. x86 and riscv64 on https://bellard.org/jslinux/), but none use WebGL/WebGPU to run the emulation on the GPU.

    I already made a PoC of an AArch64 (64-bit Arm) emulator in OpenCL which is unfortunately hindered by a multitude of OpenCL compiler bugs on all platforms (Intel with beignet or the new compute runtime and AMD with Mesa Clover and rusticl). With more widespread and thus less broken GLSL vs. OpenCL and the less complex implementation requirements for RV32 (especially 32bit integers instead of 64bit), that should not be a major problem anymore.

    Goals

    Write an RISC-V system emulator in GLSL that is capable of booting Linux and run some userspace programs interactively. Ideally it is small enough to work on online test platforms like Shaderoo with a custom texture that contains bootstrap code, kernel and initrd.

    Minimum:

    riscv32 without FPU (RV32 IMA) and MMU (µClinux), running Linux in M-mode and userspace in U-mode.

    Stretch goals:

    FPU support, S-Mode support with MMU, SMP. Custom web frontend with more possibilities for I/O (disk image, network?).

    Resources

    RISC-V ISA Specifications
    Shaderoo
    OpenGL 4.5 Quick Reference Card

    Result as of Hackweek 2024

    WebGL turned out to be insufficient, it only supports OpenGL ES 3.0 but imageLoad/imageStore needs ES 3.1. So we switched directions and had to write a native C++ host for the shaders.

    As of Hackweek Friday, the kernel attempts to boot and outputs messages, but panics due to missing memory regions.

    Since then, some bugs were fixed and enough hardware emulation implemented, so that now Linux boots with framebuffer support and it's possible to log in and run programs!

    The repo with a demo video is available at https://github.com/Vogtinator/risky-v


    New openSUSE-welcome by lkocman

    Project Description

    Let's revisit our existing openSUSE welcome app.

    My goal was to show Leap 16 in a new coat. Welcome app adds to the first time use experience. We've recently added donation button to our existing welcome.

    Some things that I recently wanted to address were EOL and possibly upgrade notification.

    I've already done some experiments with mint welcome app, but not sure if it's better than the existing one.

    There is also a PR to rework existing app https://github.com/openSUSE/openSUSE-welcome/pull/36 (this should be considered as an option too)

    Goal for this Hackweek

    New welcome app, possibly with EOL notification for Leap.

    1) Welcome application(s) with (rebrand changes) maintained under github.com/openSUSE

    2) Application is submitted to openSUSE:Factory && openSUSE:Leap:16.0

    3) Updated needles in openQA (probably post hackweek)

    Resources

    Reddit discussion about the best welcome app out there.

    Github repo for the current welcome app.


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    Finish gfxprim application multiplexor (window manager) by metan

    Project Description

    I've implemented drivers for a few e-ink displays during the last hackweek and made sure that gfxprim widgets run nicely on e-ink as well. The missing piece to have a portable e-ink computer/reader/music player/... is a application that can switch between currently running applications and that can start new applications as well. Half of the solution is ready, there is a proxy gfxprim backend where applications render into a piece of a shared memory and input events (e.g. keyboard, mouse) can be multiplexed. What is missing is an interface (possibly touchscreen friendly as well) to make it user friendly.

    Goal for this Hackweek

    Make nekowm usable "window manager".

    Resources


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.


    Create a DRM driver for VGA video cards by tdz

    Yes, those VGA video cards. The goal of this project is to implement a DRM graphics driver for such devices. While actual hardware is hard to obtain or even run today, qemu emulates VGA output.

    VGA has a number of limitations, which make this project interesting.

    • There are only 640x480 pixels (or less) on the screen. That resolution is also a soft lower limit imposed by DRM. It's mostly a problem for desktop environments though.
    • Desktop environments assume 16 million colors, but there are only 16 colors with VGA. VGA's 256 color palette is not available at 640x480. We can choose those 16 colors freely. The interesting part is how to choose them. We have to build a palette for the displayed frame and map each color to one of the palette's 16 entries. This is called dithering, and VGA's limitations are a good opportunity to learn about dithering algorithms.
    • VGA has an interesting memory layout. Most graphics devices use linear framebuffers, which store the pixels byte by byte. VGA uses 4 bitplanes instead. Plane 0 holds all bits 0 of all pixels. Plane 1 holds all bits 1 of all pixels, and so on.

    The driver will probably not be useful to many people. But, if finished, it can serve as test environment for low-level hardware. There's some interest in supporting old Amiga and Atari framebuffers in DRM. Those systems have similar limitations as VGA, but are harder to obtain and test with. With qemu, the VGA driver could fill this gap.

    Apart from the Wikipedia entry, good resources on VGA are at osdev.net and FreeVGA


    Create DRM drivers for VESA and EFI framebuffers by tdz

    Description

    We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.

    Goals

    • Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
    • Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.