Since the so-called "predictable names" for network interfaces were introduced, the concept and mainly its implementation has been a target of a lot of critique and sometimes even hate. On the other hand, similar idea works reasonably well for block devices.
In my opinion, the main reason why "predictable names" reception was not nearly as good as for block devices is the difference in how the implementation works. For block devices, the device name provided by kernel is preserved and other names based on multiple naming schemes (by path, by UUID, by various device identifiers) are created as symlinks so that all of them (including the original kernel one) can be used simultaneously. On the other hand, network interface has only one name and as it is not represented by a file, symlinks cannot be used for aliases. Therefore even if there are multiple naming schemes (e.g. based on BIOS enumeration, bus address etc.), only one of them can be used for each network device and it's rather unpredictable which one is it going to be. Moreover, some of the generated names are rather long, ugly and inconveninent and unlike with block devices, one cannot just ignore them and use a different name (e.g. one provided by kernel).
Since version 5.5, linux kernel supports so-called alternative names which can be set for a network interface in addition to its name. Any of the alternative names can be used to identify the network interface and as their use has been incorporated into the basic net device lookup functions, even the old ioctl based userspace utilities can use the alternative names (some of them may not allow names longer than IFNAMSIZ - 1
, though).
The goal of this project would be to add support for alternative names to udev, in particular:
- implement
SYMLINK+="..."
for network interfaces to add an alternative name - let udev rules for "predictable names" preserve the kernel name and add altnames for (all) applicable naming schemes
- this should be only done if kernel supports altnames
No Hackers yet
Looking for hackers with the skills:
This project is part of:
Hack Week 19
Activity
Comments
-
almost 5 years ago by bmwiedemann | Reply
My experience from the 'predictable' network names was that I added a graphics card to a machine and that caused the network to stop working, because the name changed (one number got increased by 1) and then the /etc/sysconfig/network/ifcfg- file did not apply anymore. Would have been no problem with old-style eth0, because there is only 1 network device in the system. So I hope, this work could help there in the future.
Similar Projects
Remote control for Adam Audio active monitor speakers by dmach
Description
I own a pair of Adam Audio A7V active studio monitor speakers. They have ethernet connectors that allow changing their settings remotely using the A Control software. From Windows :-( I couldn't find any open source alternative for Linux besides AES70.js library.
Goals
- Create a command-line tool for controlling the speakers.
- Python is the language of choice.
- Implement only a simple tool with the desired functionality rather than a full coverage of AES70 standard.
TODO
- ✅ discover the device
- ❌ get device manufacturer and model
- ✅ get serial number
- ✅ get description
- ✅ set description
- ✅ set mute
- ✅ set sleep
- ✅ set input (XRL (balanced), RCA (unbalanced))
- ✅ set room adaptation
- bass (1, 0, -1, -2)
- desk (0, -1, -2)
- presence (1, 0, -1)
- treble (1, 0, -1)
- ✅ set voicing (Pure, UNR, Ext)
- ❌ the Ext voicing enables the following extended functionality:
- gain
- equalizer bands
- on/off
- type
- freq
- q
- gain
- ❌ udev rules to sleep/wakeup the speakers together with the sound card
Resources
- https://www.adam-audio.com/en/a-series/a7v/
- https://www.adam-audio.com/en/technology/a-control-remote-software/
- https://github.com/DeutscheSoft/AES70.js
- https://www.aes.org/publications/standards/search.cfm?docID=101 - paid
- https://www.aes.org/standards/webinars/AESStandardsWebinarSC0212L20220531.pdf
- https://ocaalliance.github.io/downloads/AES143%20Network%20track%20NA10%20-%20AES70%20Controller.pdf
Result
- The code is available on GitHub: https://github.com/dmach/pacontrol
ESETv2 Emulator / interpreter by m.crivellari
Description
ESETv2 is an intriguing challenge developed by ESET, available on their website under the "Challenge" menu.
The challenge involves an "assembly-like" language and a Python compiler that generates .evm
binary files.
This is an example using one of their samples (it prints N Fibonacci numbers):
.dataSize 0
.code
loadConst 0, r1 # first
loadConst 1, r2 # second
loadConst 1, r14 # loop helper
consoleRead r3
loop:
jumpEqual end, r3, r15
add r1, r2, r4
mov r2, r1
mov r4, r2
consoleWrite r1
sub r3, r14, r3
jump loop
end:
hlt
This language also supports multi-threading. It includes instructions such as createThread
to start a new thread, joinThread
to wait until a thread completes, and lock
/unlock
to facilitate synchronization between threads.
Goals
- create a full interpreter able to run all the available samples provided by ESET.
- improve / optimize memory (eg. using bitfields where needed as well as avoid unnecessary memory allocations)
Resources
- Challenge URL: https://join.eset.com/en/challenges/core-software-engineer
- My github project: https://github.com/DispatchCode/eset_vm2 (not 100% complete)
Achivements
Project still not complete. Added lock / unlock instruction implementation but further debug is needed; there is a bug somewhere. Actually the code it works for almost all the examples in the samples folder. 1 of them is not yet runnable (due to a missing "write" opcode implementation), another will cause the bug to show up; still not investigated, anyhow.
FizzBuzz OS by mssola
Project Description
FizzBuzz OS (or just fbos
) is an idea I've had in order to better grasp the fundamentals of the low level of a RISC-V machine. In practice, I'd like to build a small Operating System kernel that is able to launch three processes: one that simply prints "Fizz", another that prints "Buzz", and the third which prints "FizzBuzz". These processes are unaware of each other and it's up to the kernel to schedule them by using the timer interrupts as given on openSBI (fizz on % 3 seconds, buzz on % 5 seconds, and fizzbuzz on % 15 seconds).
This kernel provides just one system call, write
, which allows any program to pass the string to be written into stdout.
This project is free software and you can find it here.
Goal for this Hackweek
- Better understand the RISC-V SBI interface.
- Better understand RISC-V in privileged mode.
- Have fun.
Resources
Results
The project was a resounding success Lots of learning, and the initial target was met.
Add a machine-readable output to dmidecode by jdelvare
Description
There have been repeated requests for a machine-friendly dmidecode output over the last decade. During Hack Week 19, 5 years ago, I prepared the code to support alternative output formats, but didn't have the time to go further. Last year, Jiri Hnidek from Red Hat Linux posted a proof-of-concept implementation to add JSON output support. This is a fairly large pull request which needs to be carefully reviewed and tested.
Goals
Review Jiri's work and provide constructive feedback. Merge the code if acceptable. Evaluate the costs and benefits of using a library such as json-c.
FastFileCheck work by pstivanin
Description
FastFileCheck is a high-performance, multithreaded file integrity checker for Linux. Designed for speed and efficiency, it utilizes parallel processing and a lightweight database to quickly hash and verify large volumes of files, ensuring their integrity over time.
https://github.com/paolostivanin/FastFileCheck
Goals
- Release v1.0.0
Design overwiew:
- Main thread (producer): traverses directories and feeds the queue (one thread is more than enough for most use cases)
- Dedicated consumer thread: manages queue and distributes work to threadpool
- Worker threads: compute hashes in parallel
This separation of concerns is efficient because:
- Directory traversal is I/O bound and works well in a single thread
- Queue management is centralized, preventing race conditions
- Hash computation is CPU-intensive and properly parallelized
Explore simple and distro indipendent declarative Linux starting on Tumbleweed or Arch Linux by janvhs
Description
Inspired by mkosi the idea is to experiment with a declarative approach of defining Linux systems. A lot of tools already make it possible to manage the systems infrastructure by using description files, rather than manual invocation. An example for this are systemd presets for managing enabled services or the /etc/fstab
file for describing how partitions should be mounted.
If we would take inspiration from openSUSE MicroOS and their handling of the /etc/
directory, we could theoretically use systemd-sysupdate
to swap out the /usr/
partition and create an A/B boot scheme, where the /usr/
partition is always freshly built according to a central system description. In the best case it would be possible to still utilise snapshots, but an A/B root scheme would be sufficient for the beginning. This way you could get the benefit of NixOS's declarative system definition, but still use the distros package repositories and don't have to deal with the overhead of Flakes or the Nix language.
Goals
- A simple and understandable system
- Check fitness of
mkosi
or write a simple extensible image builder tool for it - Create a declarative system specification
- Create a system with swappable
/usr/
partition - Create an A/B root scheme
- Swap to the new system without reboot (kexec?)
Resources
- Ideas that have been floating around in my head for a while
- https://0pointer.net/blog/fitting-everything-together.html
- GNOME OS
- MicroOS
- systemd mkosi
- Vanilla OS