Last year I developed Terracumber and, for the moment published it at one internal GitLab repository.

We intended to replace the set of scripts we have to launch sumaform for the Uyuni and SUSE Manager CI, but lacked adding the monitoring part.

Since then, I could not dedicate more time for this, and terraform 0.12 came out, and sumaform changed.

The work this time is:

  • Fix whatever is needed so terracumber can work with the new terraform 0.12 and the new sumaform.
  • Start adding some unit tests (I don't have any idea of how to do it, so I will use the opportunity to learn about it)
  • Get help from @jcavalheiro so he can add the monitoring back, and so he can use the opportunity to learn about terracumber
  • Publish the code at the uyuni-project in GitHub.

A bonus could be if someone else joins and ports whatever changes changes we had at the current set of scripts to terracumber.

Looking for hackers with the skills:

python3 terraform cucumber unit-testing prometheus

This project is part of:

Hack Week 19

Activity

  • over 5 years ago: juliogonzalezgil added keyword "python3" to this project.
  • over 5 years ago: juliogonzalezgil added keyword "terraform" to this project.
  • over 5 years ago: juliogonzalezgil added keyword "cucumber" to this project.
  • over 5 years ago: juliogonzalezgil added keyword "unit-testing" to this project.
  • over 5 years ago: juliogonzalezgil added keyword "prometheus" to this project.
  • over 5 years ago: juliogonzalezgil started this project.
  • over 5 years ago: juliogonzalezgil originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    terraform-provider-feilong by e_bischoff

    Project Description

    People need to test operating systems and applications on s390 platform.

    Installation from scratch solutions include:

    • just deploy and provision manually add-emoji (with the help of ftpboot script, if you are at SUSE)
    • use s3270 terminal emulation (used by openQA people?)
    • use LXC from IBM to start CP commands and analyze the results
    • use zPXE to do some PXE-alike booting (used by the orthos team?)
    • use tessia to install from scratch using autoyast
    • use libvirt for s390 to do some nested virtualization on some already deployed z/VM system
    • directly install a Linux kernel on a LPAR and use kvm + libvirt from there

    Deployment from image solutions include:

    • use ICIC web interface (openstack in disguise, contributed by IBM)
    • use ICIC from the openstack terraform provider (used by Rancher QA)
    • use zvm_ansible to control SMAPI
    • connect directly to SMAPI low-level socket interface

    IBM Cloud Infrastructure Center (ICIC) harnesses the Feilong API, but you can use Feilong without installing ICIC, provided you set up a "z/VM cloud connector" into one of your VMs following this schema.

    What about writing a terraform Feilong provider, just like we have the terraform libvirt provider? That would allow to transparently call Feilong from your main.tf files to deploy and destroy resources on your system/z.

    Other Feilong-based solutions include:

    • make libvirt Feilong-aware
    • simply call Feilong from shell scripts with curl
    • use zvmconnector client python library from Feilong
    • use zthin part of Feilong to directly command SMAPI.

    Goal for Hackweek 23

    My final goal is to be able to easily deploy and provision VMs automatically on a z/VM system, in a way that people might enjoy even outside of SUSE.

    My technical preference is to write a terraform provider plugin, as it is the approach that involves the least software components for our deployments, while remaining clean, and compatible with our existing development infrastructure.

    Goals for Hackweek 24

    Feilong provider works and is used internally by SUSE Manager team. Let's push it forward!

    Let's add support for fiberchannel disks and multipath.

    Possible goals for Hackweek 25

    Modernization, maturity, and maintenance.


    Move Uyuni Test Framework from Selenium to Playwright + AI by oscar-barrios

    Description

    This project aims to migrate the existing Uyuni Test Framework from Selenium to Playwright. The move will improve the stability, speed, and maintainability of our end-to-end tests by leveraging Playwright's modern features. We'll be rewriting the current Selenium code in Ruby to Playwright code in TypeScript, which includes updating the test framework runner, step definitions, and configurations. This is also necessary because we're moving from Cucumber Ruby to CucumberJS.

    If you're still curious about the AI in the title, it was just a way to grab your attention. Thanks for your understanding.


    Goals

    • Migrate Core tests including Onboarding of clients
    • Improve test reliabillity: Measure and confirm a significant reduction of flakynes.
    • Implement a robust framework: Establish a well-structured and reusable Playwright test framework using the CucumberJS

    Resources


    Flaky Tests AI Finder for Uyuni and MLM Test Suites by oscar-barrios

    Description

    Our current Grafana dashboards provide a great overview of test suite health, including a panel for "Top failed tests." However, identifying which of these failures are due to legitimate bugs versus intermittent "flaky tests" is a manual, time-consuming process. These flaky tests erode trust in our test suites and slow down development.

    This project aims to build a simple but powerful Python script that automates flaky test detection. The script will directly query our Prometheus instance for the historical data of each failed test, using the jenkins_build_test_case_failure_age metric. It will then format this data and send it to the Gemini API with a carefully crafted prompt, asking it to identify which tests show a flaky pattern.

    The final output will be a clean JSON list of the most probable flaky tests, which can then be used to populate a new "Top Flaky Tests" panel in our existing Grafana test suite dashboard.

    Goals

    By the end of Hack Week, we aim to have a single, working Python script that:

    1. Connects to Prometheus and executes a query to fetch detailed test failure history.
    2. Processes the raw data into a format suitable for the Gemini API.
    3. Successfully calls the Gemini API with the data and a clear prompt.
    4. Parses the AI's response to extract a simple list of flaky tests.
    5. Saves the list to a JSON file that can be displayed in Grafana.
    6. New panel in our Dashboard listing the Flaky tests

    Resources