The goal of this project is two fold.

The first is to better learn and understand why Kubernetes might do something in the way that it does (especially in the control plane)

The second is to create a container orchestration tool like no one has ever seen before.

Sound interesting?

We will have daily meetings june 24th - 28th at 12pm EST where everyone can join and sync what they are doing and plan to do.

The idea is NOT to make another kubernetes. It is to rethink how they did everything.

The basis of Gary is on Promise Theory, I will give a run down of what that is in the first meeting and might write something up if I get the chance.

Want to read more now? check out the docs here on github have a idea? make a PR!

Looking for hackers with the skills:

kubernetes rust

This project is part of:

Hack Week 18

Activity

  • over 5 years ago: dorf joined this project.
  • over 5 years ago: dmaiocchi liked this project.
  • over 5 years ago: jenting liked this project.
  • over 5 years ago: harts liked this project.
  • over 5 years ago: mcounts added keyword "kubernetes" to this project.
  • over 5 years ago: mcounts added keyword "rust" to this project.
  • over 5 years ago: dannysauer joined this project.
  • over 5 years ago: dannysauer liked this project.
  • over 5 years ago: dorf liked this project.
  • over 5 years ago: mcounts liked this project.
  • over 5 years ago: mcounts started this project.
  • over 5 years ago: mcounts originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Integrate Backstage with Rancher Manager by nwmacd

    Description

    Backstage (backstage.io) is an open-source, CNCF project that allows you to create your own developer portal. There are many plugins for Backstage.

    This could be a great compliment to Rancher Manager.

    Goals

    Learn and experiment with Backstage and look at how this could be integrated with Rancher Manager. Goal is to have some kind of integration completed in this Hack week.

    Progress

    Screen shot of home page at the end of Hackweek:

    Home

    Day One

    • Got Backstage running locally, understanding configuration with HTTPs.
    • Got Backstage embedded in an IFRAME inside of Rancher
    • Added content into the software catalog (see: https://backstage.io/docs/features/techdocs/getting-started/)
    • Understood more about the entity model

    Day Two

    • Connected Backstage to the Rancher local cluster and configured the Kubernetes plugin.
    • Created Rancher theme to make the light theme more consistent with Rancher

    Home

    Days Three and Day Four

    • Created two backend plugins for Backstage:

      1. Catalog Entity Provider - this imports users from Rancher into Backstage
      2. Auth Provider - uses the proxied sign-in pattern to check the Rancher session cookie, to user that to authenticate the user with Rancher and then log them into Backstage by connecting this to the imported User entity from the catalog entity provider plugin.
    • With this in place, you can single-sign-on between Rancher and Backstage when it is deployed within Rancher. Note this is only when running locally for development at present

    Home

    Home

    Day Five

    • Start to build out a production deployment for all of the above
    • Made some progress, but hit issues with the authentication and proxying when running proxied within Rancher, which needs further investigation


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Harvester Packer Plugin by mrohrich

    Description

    Hashicorp Packer is an automation tool that allows automatic customized VM image builds - assuming the user has a virtualization tool at their disposal. To make use of Harvester as such a virtualization tool a plugin for Packer needs to be written. With this plugin users could make use of their Harvester cluster to build customized VM images, something they likely want to do if they have a Harvester cluster.

    Goals

    Write a Packer plugin bridging the gap between Harvester and Packer. Users should be able to create customized VM images using Packer and Harvester with no need to utilize another virtualization platform.

    Resources

    Hashicorp documentation for building custom plugins for Packer https://developer.hashicorp.com/packer/docs/plugins/creation/custom-builders

    Source repository of the Harvester Packer plugin https://github.com/m-ildefons/harvester-packer-plugin


    Extending KubeVirtBMC's capability by adding Redfish support by zchang

    Description

    In Hack Week 23, we delivered a project called KubeBMC (renamed to KubeVirtBMC now), which brings the good old-fashioned IPMI ways to manage virtual machines running on KubeVirt-powered clusters. This opens the possibility of integrating existing bare-metal provisioning solutions like Tinkerbell with virtualized environments. We even received an inquiry about transferring the project to the KubeVirt organization. So, a proposal was filed, which was accepted by the KubeVirt community, and the project was renamed after that. We have many tasks on our to-do list. Some of them are administrative tasks; some are feature-related. One of the most requested features is Redfish support.

    Goals

    Extend the capability of KubeVirtBMC by adding Redfish support. Currently, the virtbmc component only exposes IPMI endpoints. We need to implement another simulator to expose Redfish endpoints, as we did with the IPMI module. We aim at a basic set of functionalities:

    • Power management
    • Boot device selection
    • Virtual media mount (this one is not so basic add-emoji )

    Resources


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Hacking on sched_ext by flonnegren

    Description

    Sched_ext upstream has some interesting issues open for grabs:

    Goals

    Send patches to sched_ext upstream

    Also set up perfetto to trace some of the example schedulers.

    Resources

    https://github.com/sched-ext/scx


    Grapesss: a physical Shamir's Secret Sharing application [ESP32-C3 + Mobile] by ecandino

    drawing

    Description

    A couple of years ago I created StegoSecretS, a small cli used to encrypt and split a secret into multiple keys, using the Shamir's Secret Sharing algorithm.

    The idea is to re-implement the project using physical devices. One device alone will be useless, but when close together they can be used to decrypt the secret.

    On a practical side the user encrypts the secret with a mobile application. The same application is used to split the secret, and load the partial keys into different micro-controllers. Another user will be able to decrypt the secret only having at least N devices close together (using the application).

    I'm planning to use a couple of ESP32-C3 I bought, and build a very simple Android mobile application.

    Goals

    • Learn about Rust and micro-controllers (ESP32-C3)
    • Learn about mobile applications (Android and Kotlin)

    Resources


    Agama installer on-line demo by lslezak

    Description

    The Agama installer provides a quite complex user interface. We have some screenshots on the web page but as it is basically a web application it would be nice to have some on-line demo where users could click and check it live.

    The problem is that the Agama server directly accesses the hardware (storage probing) and loads installation repositories. We cannot easily mock this in the on-line demo so the easiest way is to have just a read-only demo. You could explore the configuration options but you could not change anything, all changes would be ignored.

    The read-only demo would be a bit limited but I still think it would be useful for potential users get the feeling of the new Agama installer and get familiar with it before using in a real installation.

    As a proof of concept I already created this on-line demo.

    The implementation basically builds Agama in two modes - recording mode where it saves all REST API responses and replay mode where it for the REST API requests returns the previously recorded responses. Recording in the browser is inconvenient and error prone, there should be some scripting instead (see below).

    Goals

    • Create an Agama on-line demo which can be easily tested by users
    • The Agama installer is still in alpha phase and in active development, the online demo needs to be easily rebuilt with the latest Agama version
    • Ideally there should be some automation so the demo page is rebuilt automatically without any developer interactions (once a day or week?)

    TODO

    • Use OpenAPI to get all Agama REST API endpoints, write a script which queries all the endpoints automatically and saves the collected data to a file (see this related PR).
    • Write a script for starting an Agama VM (use libvirt/qemu?), the script should ensure we always use the same virtual HW so if we need to dump the latest REST API state we get the same (or very similar data). This should ensure the demo page does not change much regarding the storage proposal etc...
    • Fix changing the product, currently it gets stuck after clicking the "Select" button.
    • Move the mocking data (the recorded REST API responses) outside the Agama sources, it's too big and will be probably often updated. To avoid messing the history keep it in a separate GitHub repository
    • Allow changing the UI language
    • Display some note (watermark) in the page so it is clear it is a read-only demo (probably with some version or build date to know how old it is)
    • Automation for building new demo page from the latest sources. There should be some check which ensures the recorded data still matches the OpenAPI specification.

    Changing the UI language

    This will be quite tricky because selecting the proper translation file is done on the server side. We would probably need to completely re-implement the logic in the browser side and adapt the server for that.

    Also some REST API responses contain translated texts (storage proposal, pattern names in software). We would need to query the respective endpoints in all supported languages and return the correct response in runtime according to the currently selected language.

    Resources


    Implement a CLI tool for Trento - trentoctl by nkopliku

    Description

    Implement a trentoctl CLI for interacting with a trento installation

    Goals

    • learn rust
    • implement an initial trentoctl tool to enhance trento automation
    • have fun

    Resources

    trento rust. TUIs listed on this other hackweek project Hack on rich terminal user interfaces


    Write an url shortener in Rust (And learn in the way) by szarate

    So I have 469.icu :), it's currently doing nothing... (and for sale) but in the meantime, I'd like to write an url shortener from scratch and deploy it on my own server

    https://github.com/foursixnine/url-manager-rs/tree/main