A common challenge for OpenStack and K8S deployments is debugging the network when things go awry. The aim of DPHAT is to provide operators of cloud infrastructure with tooling that can analyze the environment and supply the following:

  • Feedback that the environment is in a healthy operational state
  • Identification of and guidance about where something in the network fabric is broken
  • Guidance on remediation steps
  • A pluggable interface to enable support for various cloud platforms, their respective networking backends, and any hardware devices (ie switches/routers) present in the deployment
  • RESTful API, CLI, and UI

This involves:

  • Gathering information from any relevant SDN controller, representing the network topology for the cloud, and developing an algorithm for analyzing the topology
  • Probing of VM's and containers via ARP, ICMP (ping), port scan, ofproto trace, etc. to asses forwarding and security policy instantiation
  • Reading pod / compute node state and identifying missing namespaces, tap devices, iptables chains, etc.
  • Building a database of remediation actions that can be correlated with issues flagged by DPHAT

If you want to help alleviate the headache of debugging networking issues in the cloud, let's work together!

Looking for hackers with the skills:

openstack kubernetes networking sdn openvswitch

This project is part of:

Hack Week 18

Activity

  • over 6 years ago: nicolasbock started this project.
  • over 6 years ago: nicolasbock liked this project.
  • over 6 years ago: rtidwell added keyword "openstack" to this project.
  • over 6 years ago: rtidwell added keyword "kubernetes" to this project.
  • over 6 years ago: rtidwell added keyword "networking" to this project.
  • over 6 years ago: rtidwell added keyword "sdn" to this project.
  • over 6 years ago: rtidwell added keyword "openvswitch" to this project.
  • over 6 years ago: rtidwell originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Rancher/k8s Trouble-Maker by tonyhansen

    Project Description

    When studying for my RHCSA, I found trouble-maker, which is a program that breaks a Linux OS and requires you to fix it. I want to create something similar for Rancher/k8s that can allow for troubleshooting an unknown environment.

    Goals for Hackweek 25

    • Update to modern Rancher and verify that existing tests still work
    • Change testing logic to populate secrets instead of requiring a secondary script
    • Add new tests

    Goals for Hackweek 24 (Complete)

    • Create a basic framework for creating Rancher/k8s cluster lab environments as needed for the Break/Fix
    • Create at least 5 modules that can be applied to the cluster and require troubleshooting

    Resources

    • https://github.com/celidon/rancher-troublemaker
    • https://github.com/rancher/terraform-provider-rancher2
    • https://github.com/rancher/tf-rancher-up
    • https://github.com/rancher/quickstart


    Cluster API Provider for Harvester by rcase

    Project Description

    The Cluster API "infrastructure provider" for Harvester, also named CAPHV, makes it possible to use Harvester with Cluster API. This enables people and organisations to create Kubernetes clusters running on VMs created by Harvester using a declarative spec.

    The project has been bootstrapped in HackWeek 23, and its code is available here.

    Work done in HackWeek 2023

    • Have a early working version of the provider available on Rancher Sandbox : *DONE *
    • Demonstrated the created cluster can be imported using Rancher Turtles: DONE
    • Stretch goal - demonstrate using the new provider with CAPRKE2: DONE and the templates are available on the repo

    DONE in HackWeek 24:

    DONE in 2025 (out of Hackweek)

    • Support of ClusterClass
    • Add to clusterctl community providers, you can add it directly with clusterctl
    • Testing on newer versions of Harvester v1.4.X and v1.5.X
    • Support for clusterctl generate cluster ...
    • Improve Status Conditions to reflect current state of Infrastructure
    • Improve CI (some bugs for release creation)

    Goals for HackWeek 2025

    • FIRST and FOREMOST, any topic is important to you
    • Add e2e testing
    • Certify the provider for Rancher Turtles
    • Add Machine pool labeling
    • Add PCI-e passthrough capabilities.
    • Other improvement suggestions are welcome!

    Thanks to @isim and Dominic Giebert for their contributions!

    Resources

    Looking for help from anyone interested in Cluster API (CAPI) or who wants to learn more about Harvester.

    This will be an infrastructure provider for Cluster API. Some background reading for the CAPI aspect:


    OpenPlatform Self-Service Portal by tmuntan1

    Description

    In SUSE IT, we developed an internal developer platform for our engineers using SUSE technologies such as RKE2, SUSE Virtualization, and Rancher. While it works well for our existing users, the onboarding process could be better.

    To improve our customer experience, I would like to build a self-service portal to make it easy for people to accomplish common actions. To get started, I would have the portal create Jira SD tickets for our customers to have better information in our tickets, but eventually I want to add automation to reduce our workload.

    Goals

    • Build a frontend website (Angular) that helps customers create Jira SD tickets.
    • Build a backend (Rust with Axum) for the backend, which would do all the hard work for the frontend.

    Resources (SUSE VPN only)

    • development site: https://ui-dev.openplatform.suse.com/login?returnUrl=%2Fopenplatform%2Fforms
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/backend
    • https://gitlab.suse.de/itpe/core/open-platform/op-portal/frontend


    Technical talks at universities by agamez

    Description

    This project aims to empower the next generation of tech professionals by offering hands-on workshops on containerization and Kubernetes, with a strong focus on open-source technologies. By providing practical experience with these cutting-edge tools and fostering a deep understanding of open-source principles, we aim to bridge the gap between academia and industry.

    For now, the scope is limited to Spanish universities, since we already have the contacts and have started some conversations.

    Goals

    • Technical Skill Development: equip students with the fundamental knowledge and skills to build, deploy, and manage containerized applications using open-source tools like Kubernetes.
    • Open-Source Mindset: foster a passion for open-source software, encouraging students to contribute to open-source projects and collaborate with the global developer community.
    • Career Readiness: prepare students for industry-relevant roles by exposing them to real-world use cases, best practices, and open-source in companies.

    Resources

    • Instructors: experienced open-source professionals with deep knowledge of containerization and Kubernetes.
    • SUSE Expertise: leverage SUSE's expertise in open-source technologies to provide insights into industry trends and best practices.


    Kubernetes-Based ML Lifecycle Automation by lmiranda

    Description

    This project aims to build a complete end-to-end Machine Learning pipeline running entirely on Kubernetes, using Go, and containerized ML components.

    The pipeline will automate the lifecycle of a machine learning model, including:

    • Data ingestion/collection
    • Model training as a Kubernetes Job
    • Model artifact storage in an S3-compatible registry (e.g. Minio)
    • A Go-based deployment controller that automatically deploys new model versions to Kubernetes using Rancher
    • A lightweight inference service that loads and serves the latest model
    • Monitoring of model performance and service health through Prometheus/Grafana

    The outcome is a working prototype of an MLOps workflow that demonstrates how AI workloads can be trained, versioned, deployed, and monitored using the Kubernetes ecosystem.

    Goals

    By the end of Hack Week, the project should:

    1. Produce a fully functional ML pipeline running on Kubernetes with:

      • Data collection job
      • Training job container
      • Storage and versioning of trained models
      • Automated deployment of new model versions
      • Model inference API service
      • Basic monitoring dashboards
    2. Showcase a Go-based deployment automation component, which scans the model registry and automatically generates & applies Kubernetes manifests for new model versions.

    3. Enable continuous improvement by making the system modular and extensible (e.g., additional models, metrics, autoscaling, or drift detection can be added later).

    4. Prepare a short demo explaining the end-to-end process and how new models flow through the system.

    Resources

    Project Repository

    Updates

    1. Training pipeline and datasets
    2. Inference Service py