SUSE Manager uses an ivy repository on the R&D network to get the packaged jar to build against. To remove the manual maintenance of that repository and allow external contributors to hack the Java code of Uyuni / SUSE Manager we need to provide an Ivy plugin that gets the jars directly from OBS.

Looking for hackers with the skills:

java uyuni obs

This project is part of:

Hack Week 18

Activity

  • over 5 years ago: jcavalheiro liked this project.
  • almost 6 years ago: cbosdonnat added keyword "java" to this project.
  • almost 6 years ago: cbosdonnat added keyword "uyuni" to this project.
  • almost 6 years ago: cbosdonnat added keyword "obs" to this project.
  • almost 6 years ago: cbosdonnat started this project.
  • almost 6 years ago: cbosdonnat originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Testing and adding GNU/Linux distributions on Uyuni by juliogonzalezgil

    Join the Gitter channel! https://gitter.im/uyuni-project/hackweek

    Uyuni is a configuration and infrastructure management tool that saves you time and headaches when you have to manage and update tens, hundreds or even thousands of machines. It also manages configuration, can run audits, build image containers, monitor and much more!

    Currently there are a few distributions that are completely untested on Uyuni or SUSE Manager (AFAIK) or just not tested since a long time, and could be interesting knowing how hard would be working with them and, if possible, fix whatever is broken.

    For newcomers, the easiest distributions are those based on DEB or RPM packages. Distributions with other package formats are doable, but will require adapting the Python and Java code to be able to sync and analyze such packages (and if salt does not support those packages, it will need changes as well). So if you want a distribution with other packages, make sure you are comfortable handling such changes.

    No developer experience? No worries! We had non-developers contributors in the past, and we are ready to help as long as you are willing to learn. If you don't want to code at all, you can also help us preparing the documentation after someone else has the initial code ready, or you could also help with testing :-)

    The idea is testing Salt and Salt-ssh clients, but NOT traditional clients, which are deprecated.

    To consider that a distribution has basic support, we should cover at least (points 3-6 are to be tested for both salt minions and salt ssh minions):

    1. Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    2. Onboarding (salt minion from UI, salt minion from bootstrap scritp, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator)
    3. Package management (install, remove, update...)
    4. Patching
    5. Applying any basic salt state (including a formula)
    6. Salt remote commands
    7. Bonus point: Java part for product identification, and monitoring enablement
    8. Bonus point: sumaform enablement (https://github.com/uyuni-project/sumaform)
    9. Bonus point: Documentation (https://github.com/uyuni-project/uyuni-docs)
    10. Bonus point: testsuite enablement (https://github.com/uyuni-project/uyuni/tree/master/testsuite)

    If something is breaking: we can try to fix it, but the main idea is research how supported it is right now. Beyond that it's up to each project member how much to hack :-)

    • If you don't have knowledge about some of the steps: ask the team
    • If you still don't know what to do: switch to another distribution and keep testing.

    This card is for EVERYONE, not just developers. Seriously! We had people from other teams helping that were not developers, and added support for Debian and new SUSE Linux Enterprise and openSUSE Leap versions :-)

    Pending

    FUSS

    FUSS is a complete GNU/Linux solution (server, client and desktop/standalone) based on Debian for managing an educational network.

    https://fuss.bz.it/

    Seems to be a Debian 12 derivative, so adding it could be quite easy.

    • [W] Reposync (this will require using spacewalk-common-channels and adding channels to the .ini file)
    • [W] Onboarding (salt minion from UI, salt minion from bootstrap script, and salt-ssh minion) (this will probably require adding OS to the bootstrap repository creator) --> Working for all 3 options (salt minion UI, salt minion bootstrap script and salt-ssh minion from the UI).
    • [W] Package management (install, remove, update...) --> Installing a new package works, needs to test the rest.
    • [I] Patching (if patch information is available, could require writing some code to parse it, but IIRC we have support for Ubuntu already). No patches detected. Do we support patches for Debian at all?
    • [W] Applying any basic salt state (including a formula)
    • [W] Salt remote commands
    • [ ] Bonus point: Java part for product identification, and monitoring enablement


    SUSE AI Meets the Game Board by moio

    Use tabletopgames.ai’s open source TAG and PyTAG frameworks to apply Statistical Forward Planning and Deep Reinforcement Learning to two board games of our own design. On an all-green, all-open source, all-AWS stack!
    A chameleon playing chess in a train car, as a metaphor of SUSE AI applied to games


    Results: Infrastructure Achievements

    We successfully built and automated a containerized stack to support our AI experiments. This included:

    A screenshot of k9s and nvtop showing PyTAG running in Kubernetes with GPU acceleration

    ./deploy.sh and voilà - Kubernetes running PyTAG (k9s, above) with GPU acceleration (nvtop, below)

    Results: Game Design Insights

    Our project focused on modeling and analyzing two card games of our own design within the TAG framework:

    • Game Modeling: We implemented models for Dario's "Bamboo" and Silvio's "Totoro" and "R3" games, enabling AI agents to play thousands of games ...in minutes!
    • AI-driven optimization: By analyzing statistical data on moves, strategies, and outcomes, we iteratively tweaked the game mechanics and rules to achieve better balance and player engagement.
    • Advanced analytics: Leveraging AI agents with Monte Carlo Tree Search (MCTS) and random action selection, we compared performance metrics to identify optimal strategies and uncover opportunities for game refinement .

    Cards from the three games

    A family picture of our card games in progress. From the top: Bamboo, Totoro, R3

    Results: Learning, Collaboration, and Innovation

    Beyond technical accomplishments, the project showcased innovative approaches to coding, learning, and teamwork:

    • "Trio programming" with AI assistance: Our "trio programming" approach—two developers and GitHub Copilot—was a standout success, especially in handling slightly-repetitive but not-quite-exactly-copypaste tasks. Java as a language tends to be verbose and we found it to be fitting particularly well.
    • AI tools for reporting and documentation: We extensively used AI chatbots to streamline writing and reporting. (Including writing this report! ...but this note was added manually during edit!)
    • GPU compute expertise: Overcoming challenges with CUDA drivers and cloud infrastructure deepened our understanding of GPU-accelerated workloads in the open-source ecosystem.
    • Game design as a learning platform: By blending AI techniques with creative game design, we learned not only about AI strategies but also about making games fun, engaging, and balanced.

    Last but not least we had a lot of fun! ...and this was definitely not a chatbot generated line!

    The Context: AI + Board Games


    Saltboot ability to deploy OEM images by oholecek

    Description

    Saltboot is a system deployment part of Uyuni. It is the mechanism behind deploying Kiwi built system images from central Uyuni server location.

    System image is when the image is only of one partition and does not contain whole disk image and deployment system has to take care of partitioning, fstab on top of integrity validation.

    However systems like Aeon, SUSE Linux Enterprise Micro and similar are distributed as disk images (also so called OEM images). Saltboot currently cannot deploy these systems.

    The main problem to saltboot is however that currently saltboot support is built into the image itself. This step is not desired when using OEM images.

    Goals

    Saltboot needs to be standalone and be able to deploy OEM images. Responsibility of saltboot would then shrink to selecting correct image, image integrity validation, deployment and boot to deployed system.

    Resources

    • Saltboot - https://github.com/uyuni-project/retail/tree/master
    • Uyuni - https://github.com/uyuni-project/uyuni


    Edge Image Builder and mkosi for Uyuni by oholecek

    Description

    One part of Uyuni system management tool is ability to build custom images. Currently Uyuni supports only Kiwi image builder.

    Kiwi however is not the only image building system out there and with the goal to also become familiar with other systems, this projects aim to add support for Edge Image builder and systemd's mkosi systems.

    Goals

    Uyuni is able to

    • provision EIB and mkosi build hosts
    • build EIB and mkosi images and store them

    Resources

    • Uyuni - https://github.com/uyuni-project/uyuni
    • Edge Image builder - https://github.com/suse-edge/edge-image-builder
    • mkosi - https://github.com/systemd/mkosi


    Uyuni developer-centric documentation by deneb_alpha

    Description

    While we currently have extensive documentation on user-oriented tasks such as adding minions, patching, fine-tuning, etc, there is a notable gap when it comes to centralizing and documenting core functionalities for developers.

    The number of functionalities and side tools we have in Uyuni can be overwhelming. It would be nice to have a centralized place with descriptive list of main/core functionalities.

    Goals

    Create, aggregate and review on the Uyuni wiki a set of resources, focused on developers, that include also some known common problems/troubleshooting.

    The documentation will be helpful not only for everyone who is trying to learn the functionalities with all their inner processes like newcomer developers or community enthusiasts, but also for anyone who need a refresh.

    Resources

    The resources are currently aggregated here: https://github.com/uyuni-project/uyuni/wiki


    Automated Test Report reviewer by oscar-barrios

    Description

    In SUMA/Uyuni team we spend a lot of time reviewing test reports, analyzing each of the test cases failing, checking if the test is a flaky test, checking logs, etc.

    Goals

    Speed up the review by automating some parts through AI, in a way that we can consume some summary of that report that could be meaningful for the reviewer.

    Resources

    No idea about the resources yet, but we will make use of:

    • HTML/JSON Report (text + screenshots)
    • The Test Suite Status GithHub board (via API)
    • The environment tested (via SSH)
    • The test framework code (via files)


    Create SUSE Manager users from ldap/ad groups by mbrookhuis

    Description

    This tool is used to create users in SUSE Manager Server based on LDAP/AD groups. For each LDAP/AD group a role within SUSE Manager Server is defined. Also, the tool will check if existing users still have the role they should have, and, if not, it will be corrected. The same for if a user is disabled, it will be enabled again. If a users is not present in the LDAP/AD groups anymore, it will be disabled or deleted, depending on the configuration.

    The code is written for Python 3.6 (the default with SLES15.x), but will also work with newer versions. And works against SUSE Manger 4.3 and 5.x

    Goals

    Create a python and/or golang utility that will manage users in SUSE Manager based on LDAP/AD group-membership. In a configuration file is defined which roles the members of a group will get.

    Table of contents

    Installation

    To install this project, perform the following steps:

    • Be sure that python 3.6 is installed and also the module python3-PyYAML. Also the ldap3 module is needed:

    bash zypper in python3 python3-PyYAML pip install yaml

    • On the server or PC, where it should run, create a directory. On linux, e.g. /opt/sm-ldap-users

    • Copy all the file to this directory.

    • Edit the configsm.yaml. All parameters should be entered. Tip: for the ldap information, the best would be to use the same as for SSSD.

    • Be sure that the file sm-ldap-users.py is executable. It would be good to change the owner to root:root and only root can read and execute:

    bash chmod 600 * chmod 700 sm-ldap-users.py chown root:root *

    Usage

    This is very simple. Once the configsm.yaml contains the correct information, executing the following will do the magic:

    bash /sm-ldap-users.py

    repository link

    https://github.com/mbrookhuis/sm-ldap-users


    Automation of ABI compatibility checks by ateixeira

    Description

    ABI compatibility checks could be further automated by using the OBS API to download built RPMs and using existing tools to analyze ABI compatibility between the libraries contained in those packages. This project aims to explore these possibilities and figure out a way to make ABI checks as painless and fast as possible for package maintainers.

    Resources

    https://github.com/openSUSE/abi-compliance-checker

    https://github.com/lvc/abi-compliance-checker

    https://sourceware.org/libabigail/


    Bootstrap openSUSE on LoongArch by glaubitz

    Description

    LoongArch is a new architecture from China which has its roots in the MIPS architecture. It has been created by Loongson and is already supported by Debian Ports, Gentoo and Loongnix.

    Upstream support for LoongArch is already quite complete which includes LLVM, Rust, Golang, GRUB, QEMU, LibreOffice and many more. In Debian Ports, where the port is called "loong64", more than 95% of the whole Debian archive have been successfully built for LoongArch.

    QEMU support is rather complete and stable such that packages can be built in emulated environments. Hardware can also be requested by Loongson on request for free. Access to real hardware is also provided through the GCC Compile Farm.

    Goals

    The initial goal should be to add LoongArch to OBS and build a minimal set of packages.

    Resources

    Results

    Acknowledgements

    • Thanks to Adrian Schröter and Rüdiger Oertl for the help with setting up the FTP space and OBS project
    • Thanks to Dirk Müller for the input on how to get started with a new port
    • Thanks to Richard Biener for quickly accepting my submit requests to add loongarch64 support to the toolchain


    Fix RSpec tests in order to replace the ruby-ldap rubygem in OBS by enavarro_suse

    Description

    "LDAP mode is not official supported by OBS!". See: config/options.yml.example#L100-L102

    However, there is an RSpec file which tests LDAP mode in OBS. These tests use the ruby-ldap rubygem, mocking the results returned by a LDAP server.

    The ruby-ldap rubygem seems no longer maintaned, and also prevents from updating to a more recent Ruby version. A good alternative is to replace it with the net-ldap rubygem.

    Before replacing the ruby-ldap rubygem, we should modify the tests so the don't mock the responses of a LDAP server. Instead, we should modify the tests and run them against a real LDAP server.

    Goals

    Goals of this project:

    • Modify the RSpec tests and run them against a real LDAP server
    • Replace the net-ldap rubygem with the ruby-ldap rubygem

    Achieving the above mentioned goals will:

    • Permit upgrading OBS from Ruby 3.1 to Ruby 3.2
    • Make a step towards officially supporting LDAP in OBS.

    Resources


    Explore the integration between OBS and GitHub by pdostal

    Project Description

    The goals:

    1) When GitHub pull request is created or modified the OBS project will be forked and the build results reported back to GitHub. 2) When new version of the GitHub project will be published the OBS will redownload the source and rebuild the project.

    Goal for this Hackweek

    Do as much as possible, blog about it and maybe use it another existing project.

    Resources


    Learn about OSB and contribute to `kustomize` and `k9s` packages to add ARM arch by dpock

    Description

    There are already k9s and kustomize packages that exist for openSUSE today. These could be used as the source for these binaries in our rancher projects. By using them we would benefit from CVE fixes included in our distribution of the packages not in cluded upstream. However they are not providing arm package builds which are required.

    Goals

    • [ ] Update the kustomize package in OBS to use the newest version and send change request

    Resources

    • k9s: https://build.opensuse.org/package/show/openSUSE:Factory/k9s
    • kustomize: https://build.opensuse.org/package/show/openSUSE:Factory/kustomize
    • Learning Docs: https://confluence.suse.com/display/packaging/Training%2C+Talks+and+Videos