Telegram is a proprietary messenger that gained some popularity recently. It has FOSS client, API and binding for the API. It has private chats, group chats and "channels". Channels are content feeds.

RSS allows users to access updates to online content in a standardized, computer-readable format.

Telegram requires an account to read channels. Creating an account requires you to give Telegram your phone number. Unfortunately, some good content is being posted to Telegram channels. But it is unacceptable for some people to give phone number to Telegram, which is ran by some Russian billionaires, who might turn out to be evil. Also, RSS/Atom is standardized and has a lot of great readers.

The idea is to create a FOSS gate that would allow to convert Telegram channels to RSS/Atom. The gate will be hosted somewhere.

UI: A user posts channel name into input, presses "submit" and URL with RSS/Atom feed is being created. Posts from channels should be fetched in the background, for example, with cron jobs

Looking for hackers with the skills:

telegram rss atom python ruby rubyonrails django

This project is part of:

Hack Week 17

Activity

  • over 7 years ago: bbobrov added keyword "django" to this project.
  • over 7 years ago: bbobrov added keyword "telegram" to this project.
  • over 7 years ago: bbobrov added keyword "rss" to this project.
  • over 7 years ago: bbobrov added keyword "atom" to this project.
  • over 7 years ago: bbobrov added keyword "python" to this project.
  • over 7 years ago: bbobrov added keyword "ruby" to this project.
  • over 7 years ago: bbobrov added keyword "rubyonrails" to this project.
  • over 7 years ago: bbobrov originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Song Search with CLAP by gcolangiuli

    Description

    Contrastive Language-Audio Pretraining (CLAP) is an open-source library that enables the training of a neural network on both Audio and Text descriptions, making it possible to search for Audio using a Text input. Several pre-trained models for song search are already available on huggingface

    SUSE Hackweek AI Song Search

    Goals

    Evaluate how CLAP can be used for song searching and determine which types of queries yield the best results by developing a Minimum Viable Product (MVP) in Python. Based on the results of this MVP, future steps could include:

    • Music Tagging;
    • Free text search;
    • Integration with an LLM (for example, with MCP or the OpenAI API) for music suggestions based on your own library.

    The code for this project will be entirely written using AI to better explore and demonstrate AI capabilities.

    Result

    In this MVP we implemented:

    • Async Song Analysis with Clap model
    • Free Text Search of the songs
    • Similar song search based on vector representation
    • Containerised version with web interface

    We also documented what went well and what can be improved in the use of AI.

    You can have a look at the result here:

    Future implementation can be related to performance improvement and stability of the analysis.

    References


    Update M2Crypto by mcepl

    There are couple of projects I work on, which need my attention and putting them to shape:

    Goal for this Hackweek

    • Put M2Crypto into better shape (most issues closed, all pull requests processed)
    • More fun to learn jujutsu
    • Play more with Gemini, how much it help (or not).
    • Perhaps, also (just slightly related), help to fix vis to work with LuaJIT, particularly to make vis-lspc working.


    Collection and organisation of information about Bulgarian schools by iivanov

    Description

    To achieve this it will be necessary:

    • Collect/download raw data from various government and non-governmental organizations
    • Clean up raw data and organise it in some kind database.
    • Create tool to make queries easy.
    • Or perhaps dump all data into AI and ask questions in natural language.

    Goals

    By selecting particular school information like this will be provided:

    • School scores on national exams.
    • School scores from the external evaluations exams.
    • School town, municipality and region.
    • Employment rate in a town or municipality.
    • Average health of the population in the region.

    Resources

    Some of these are available only in bulgarian.

    • https://danybon.com/klasazia
    • https://nvoresults.com/index.html
    • https://ri.mon.bg/active-institutions
    • https://www.nsi.bg/nrnm/ekatte/archive

    Results

    • Information about all Bulgarian schools with their scores during recent years cleaned and organised into SQL tables
    • Information about all Bulgarian villages, cities, municipalities and districts cleaned and organised into SQL tables
    • Information about all Bulgarian villages and cities census since beginning of this century cleaned and organised into SQL tables.
    • Information about all Bulgarian municipalities about religion, ethnicity cleaned and organised into SQL tables.
    • Data successfully loaded to locally running Ollama with help to Vanna.AI
    • Seems to be usable.

    TODO

    • Add more statistical information about municipalities and ....

    Code and data


    Liz - Prompt autocomplete by ftorchia

    Description

    Liz is the Rancher AI assistant for cluster operations.

    Goals

    We want to help users when sending new messages to Liz, by adding an autocomplete feature to complete their requests based on the context.

    Example:

    • User prompt: "Can you show me the list of p"
    • Autocomplete suggestion: "Can you show me the list of p...od in local cluster?"

    Example:

    • User prompt: "Show me the logs of #rancher-"
    • Chat console: It shows a drop-down widget, next to the # character, with the list of available pod names starting with "rancher-".

    Technical Overview

    1. The AI agent should expose a new ws/autocomplete endpoint to proxy autocomplete messages to the LLM.
    2. The UI extension should be able to display prompt suggestions and allow users to apply the autocomplete to the Prompt via keyboard shortcuts.

    Resources

    GitHub repository


    Improve/rework household chore tracker `chorazon` by gniebler

    Description

    I wrote a household chore tracker named chorazon, which is meant to be deployed as a web application in the household's local network.

    It features the ability to set up different (so far only weekly) schedules per task and per person, where tasks may span several days.

    There are "tokens", which can be collected by users. Tasks can (and usually will) have rewards configured where they yield a certain amount of tokens. The idea is that they can later be redeemed for (surprise) gifts, but this is not implemented yet. (So right now one needs to edit the DB manually to subtract tokens when they're redeemed.)

    Days are not rolled over automatically, to allow for task completion control.

    We used it in my household for several months, with mixed success. There are many limitations in the system that would warrant a revisit.

    It's written using the Pyramid Python framework with URL traversal, ZODB as the data store and Web Components for the frontend.

    Goals

    • Add admin screens for users, tasks and schedules
    • Add models, pages etc. to allow redeeming tokens for gifts/surprises
    • …?

    Resources

    tbd (Gitlab repo)


    Recipes catalog and calculator in Rails 8 by gfilippetti

    My wife needs a website to catalog and sell the products of her upcoming bakery, and I need to learn and practice modern Rails. So I'm using this Hack Week to build a modern store using the latest Ruby on Rails best practices, ideally up to the deployment.

    TO DO

    • Index page
    • Product page
    • Admin area -- Supplies calculator based on orders -- Orders notification
    • Authentication
    • Payment
    • Deployment

    Day 1

    As my Rails knowledge was pretty outdated and I had 0 experience with Turbo (wich I want to use in the app), I started following a turbo-rails course. I completed 5 of 11 chapters.

    Day 2

    Continued the course until chapter 8 and added live updates & an empty state to the app. I should finish the course on day 3 and start my own project with the knowledge from it.

    Hackweek 25

    For this Hackweek I'll continue this project, focusing on a Catalog/Calculator for my wife's recipes so she can use for her Café.

    Day 1


    RMT.rs: High-Performance Registration Path for RMT using Rust by gbasso

    Description

    The SUSE Repository Mirroring Tool (RMT) is a critical component for managing software updates and subscriptions, especially for our Public Cloud Team (PCT). In a cloud environment, hundreds or even thousands of new SUSE instances (VPS/EC2) can be provisioned simultaneously. Each new instance attempts to register against an RMT server, creating a "thundering herd" scenario.

    We have observed that the current RMT server, written in Ruby, faces performance issues under this high-concurrency registration load. This can lead to request overhead, slow registration times, and outright registration failures, delaying the readiness of new cloud instances.

    This Hackweek project aims to explore a solution by re-implementing the performance-critical registration path in Rust. The goal is to leverage Rust's high performance, memory safety, and first-class concurrency handling to create an alternative registration endpoint that is fast, reliable, and can gracefully manage massive, simultaneous request spikes.

    The new Rust module will be integrated into the existing RMT Ruby application, allowing us to directly compare the performance of both implementations.

    Goals

    The primary objective is to build and benchmark a high-performance Rust-based alternative for the RMT server registration endpoint.

    Key goals for the week:

    1. Analyze & Identify: Dive into the SUSE/rmt Ruby codebase to identify and map out the exact critical path for server registration (e.g., controllers, services, database interactions).
    2. Develop in Rust: Implement a functionally equivalent version of this registration logic in Rust.
    3. Integrate: Explore and implement a method for Ruby/Rust integration to "hot-wire" the new Rust module into the RMT application. This may involve using FFI, or libraries like rb-sys or magnus.
    4. Benchmark: Create a benchmarking script (e.g., using k6, ab, or a custom tool) that simulates the high-concurrency registration load from thousands of clients.
    5. Compare & Present: Conduct a comparative performance analysis (requests per second, latency, success/error rates, CPU/memory usage) between the original Ruby path and the new Rust path. The deliverable will be this data and a summary of the findings.

    Resources

    • RMT Source Code (Ruby):
      • https://github.com/SUSE/rmt
    • RMT Documentation:
      • https://documentation.suse.com/sles/15-SP7/html/SLES-all/book-rmt.html
    • Tooling & Stacks:
      • RMT/Ruby development environment (for running the base RMT)
      • Rust development environment (rustup, cargo)
    • Potential Integration Libraries:
      • rb-sys: https://github.com/oxidize-rb/rb-sys
      • Magnus: https://github.com/matsadler/magnus
    • Benchmarking Tools:
      • k6 (https://k6.io/)
      • ab (ApacheBench)