We had old arndale images working, but those were based on openSUSE-12.x which is now long obsolete and bad (e.g. missing security updates).
Thus we want to use a more modern u-boot and kernel, but those currently trigger a kernel panic. That needs to be investigated, tracked down and fixed but on the way we are hitting other problems, such as insufficient cross-compilation tools and a u-boot that can not do network/tftp boot.
This project is part of:
Hack Week 13
Activity
Comments
-
almost 10 years ago by bmwiedemann | Reply
using setenv append " init=/bin/bash" I found a workaround: echo "install xhci_hcd /bin/true" > /etc/modprobe.d/90-blacklist-xhci.conf
-
almost 10 years ago by bmwiedemann | Reply
(ontop of modules loaded in initrd) minimal reproducer is
for m in exynosdrm i2cs3c2410 clks2mps11 s5m8767 xhciplathcd asix ; do echo $m ; /sbin/modprobe $m ; done
-
almost 10 years ago by bmwiedemann | Reply
still crashed with "xhci_hcd" blacklisted - but blacklisting exynosdrm helped
Similar Projects
Backporting patches using LLM by jankara
Description
Backporting Linux kernel fixes (either for CVE issues or as part of general git-fixes workflow) is boring and mostly mechanical work (dealing with changes in context, renamed variables, new helper functions etc.). The idea of this project is to explore usage of LLM for backporting Linux kernel commits to SUSE kernels using LLM.
Goals
- Create safe environment allowing LLM to run and backport patches without exposing the whole filesystem to it (for privacy and security reasons).
- Write prompt that will guide LLM through the backporting process. Fine tune it based on experimental results.
- Explore success rate of LLMs when backporting various patches.
Resources
- Docker
- Gemini CLI
Repository
Current version of the container with some instructions for use are at: https://gitlab.suse.de/jankara/gemini-cli-backporter
Improve UML page fault handler by ptesarik
Description
Improve UML handling of segmentation faults in kernel mode. Although such page faults are generally caused by a kernel bug, it is annoying if they cause an infinite loop, or panic the kernel. More importantly, a robust implementation allows to write KUnit tests for various guard pages, preventing potential kernel self-protection regressions.
Goals
Convert the UML page fault handler to use oops_* helpers, go through a few review rounds and finally get my patch series merged in 6.14.
Resources
Wrong initial attempt: https://lore.kernel.org/lkml/20231215121431.680-1-petrtesarik@huaweicloud.com/T/
dynticks-testing: analyse perf / trace-cmd output and aggregate data by m.crivellari
Description
dynticks-testing is a project started years ago by Frederic Weisbecker. One of the feature is to check the actual configuration (isolcpus, irqaffinity etc etc) and give feedback on it.
An important goal of this tool is to parse the output of trace-cmd / perf and provide more readable data, showing the duration of every events grouped by PID (showing also the CPU number, if the tasks has been migrated etc).
An example of data captured on my laptop (incomplete!!):
-0 [005] dN.2. 20310.270699: sched_wakeup: WaylandProxy:46380 [120] CPU:005
-0 [005] d..2. 20310.270702: sched_switch: swapper/5:0 [120] R ==> WaylandProxy:46380 [120]
...
WaylandProxy-46380 [004] d..2. 20310.295397: sched_switch: WaylandProxy:46380 [120] S ==> swapper/4:0 [120]
-0 [006] d..2. 20310.295397: sched_switch: swapper/6:0 [120] R ==> firefox:46373 [120]
firefox-46373 [006] d..2. 20310.295408: sched_switch: firefox:46373 [120] S ==> swapper/6:0 [120]
-0 [004] dN.2. 20310.295466: sched_wakeup: WaylandProxy:46380 [120] CPU:004
Output of noise_parse.py:
Task: WaylandProxy Pid: 46380 cpus: {4, 5} (Migrated!!!)
Wakeup Latency Nr: 24 Duration: 89
Sched switch: kworker/12:2 Nr: 1 Duration: 6
My first contribution is around Nov. 2024!
Goals
- add more features (eg cpuset)
- test / bugfix
Resources
- Frederic's public repository: https://git.kernel.org/pub/scm/linux/kernel/git/frederic/dynticks-testing.git/
- https://docs.kernel.org/timers/no_hz.html#testing
Progresses
isolcpus and cpusets implemented and merged in master: dynticks-testing.git commit
early stage kdump support by mbrugger
Project Description
When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.
Goal for the Hackweeks
- Investigate if this is possible and the implications it would have (done in HW21)
- Hack up a PoC (done in HW22 and HW23)
- Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).
update HW23
- I was able to include the crash kernel into the kernel Image.
- I'll need to find a way to load that from
init/main.c:start_kernel()probably afterkcsan_init() - I workaround for a smoke test was to hack
kexec_file_load()systemcall which has two problems:- My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
- As the crash kernel is part of init.data it will be already stale once I can call
kexec_file_load()from user-space.
The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.
update HW24
- Day1
- rebased on v6.12 with no problems others then me breaking the config
- setting up a new compilation and qemu/virtme env
- getting desperate as nothing works that used to work
- Day 2
- getting to call the invocation of loading the early kernel from
__initafterkcsan_init()
- getting to call the invocation of loading the early kernel from
Day 3
- fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
- code refactoring
- I'm now able to load the crash kernel
- When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in
elfcorehdr_read_notes()
Day 4
- crash systems crashes (no pun intended) in
copy_old_mempage()link; will need to understand elfcorehdr... - call path
vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
- crash systems crashes (no pun intended) in
Day 5
- hacking
arch/arm64/kernel/crash_dump.c:copy_old_mempage()to see if crash system really starts. It does. - fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
- hacking
update HW25
- Day 1
- rebased crash-kernel on v6.12.59 (for now), still crashing
pudc - A PID 1 process that barks to the internet by mssola
Description
As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:
- The backend is written in a mixture of C and RISC-V assembly.
- The backend is actually PID1 (for real, not within a container).
- We poll and parse incoming HTTP requests ourselves.
- The frontend is a mere HTML page with htmx.
The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.
I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.
Goals
- Have a better understanding of different Linux features from user space down to the kernel internals.
- Most importantly: have fun.
Resources