Building on top of Rouslan Dimitrov's Microcontroller Class D Amplifier, I developed the idea to feed the power amplifier with PCM data directly. Rouslan does some dithering and noise shaping, but I'm convinced that proper interpolation would sound better. The ATtiny is too slow to do even cubic interpolation so I'll move that into the host.
The result should be an ALSA driver, that does upsampling of 44.1 or 48 kHz to about 240 kHz (the Class-D PWM frequency) and sends it over preferably, but not limited to, SPI towards the AVR, which will drive the power FETs with its PWM outputs. This can give any (embedded) linux system the right audio "punch" with a fairly short BOM.
This project is part of:
Hack Week 10
Activity
Comments
Be the first to comment!
Similar Projects
Play with esp32 and arduino to create domotics stuff by aginies
Description
got some esp32 board and multiple small periphericals since a while at home, its time to play with them and learn a bit more about this stuff. Connect them to Home assistant.
Goals
learn more about esp32 and creating domotics objets.
Resources
esp32 home
Lawndon - Recycled electric mower converted into a 3D printable and autonomous hill climbing mower. by jordonleach
Description
Lawndon is currently a remote controlled mower built from a recycled electric push mower and modified with 3D printable parts. The main idea is to have a high torque, low power mower to be efficient and powerful enough to climb hills. Previous iterations have progressed the original idea into a 4x4 mower with printable tank tracks.
> Continuation of lawndon project.
Goals
My goal this year is to begin implementing autonomous capabilities that are economical and easily reproducible without the requirement of using GNSS. I plan on utilizing UWB technology to run the triangulation necessary for automatic navigation of the mower.
Update
I successfully built a few mechanisms to triangulate the position of a UWB tag using 3 anchors, along with a node.js backend and Vue.js frontend to display in real-time the position of the tag related to the anchors.
View post here: https://github.com/jordojordo/lawndon/wiki/Videos#nov-22nd-2024
Resources
Visit the Lawndon repository for information.
Modularization and Modernization of cifs.ko for Enhanced SMB Protocol Support by hcarvalho
Creator:
Enzo Matsumiya ematsumiya@suse.de @ SUSE Samba team
Members:
Henrique Carvalho henrique.carvalho@suse.com @ SUSE Samba team
Description
Split cifs.ko in 2 separate modules; one for SMB 1.0 and 2.0.x, and another for SMB 2.1, 3.0, and 3.1.1.
Goals
Primary
Start phasing out/deprecation of older SMB versions
Secondary
- Clean up of the code (with focus on the newer versions)
- Update cifs-utils
- Update documentation
- Improve backport workflow (see below)
Technical details
Ideas for the implementation.
- fs/smb/client/{old,new}.c to generate the respective modules
- Maybe don't create separate folders? (re-evaluate as things progresses!)
- Remove server->{ops,vals} if possible
- Clean up fs_context.* -- merge duplicate options into one, handle them in userspace utils
- Reduce code in smb2pdu.c -- tons of functions with very similar init/setup -> send/recv -> handle/free flow
- Restructure multichannel
- Treat initial connection as "channel 0" regardless of multichannel enabled/negotiated status, proceed with extra channels accordingly
- Extra channel just point to "channel 0" as the primary server, no need to allocate an extra TCPServerInfo for each one
- Authentication mechanisms
- Modernize algorithms (references: himmelblau, IAKERB/Local KDC, SCRAM, oauth2 (Azure), etc.
Create DRM drivers for VESA and EFI framebuffers by tdz
Description
We already have simpledrm for firmware framebuffers. But the driver is originally for ARM boards, not PCs. It is already overloaded with code to support both use cases. At the same time it is missing possible features for VESA and EFI, such as palette modes or EDID support. We should have DRM drivers for VESA and EFI interfaces. The infrastructure exists already and initial drivers can be forked from simpledrm.
Goals
- Initially, a bare driver for VESA or EFI should be created. It can take functionality from simpledrm.
- Then we can begin to add additional features. The boot loader can provide EDID data. With VGA hardware, VESA can support paletted modes or color management. Example code exists in vesafb.
Modernize ocfs2 by goldwynr
Ocfs2 has gone into a stage of neglect and disrepair. Modernize the code to generate enough interest.
Goals: * Change the mount sequence to use fscontext * Move from using bufferhead to bio/folios * Use iomap * Run it through xfstests
Officially Become a Kernel Hacker! by m.crivellari
Description
My studies as well my spare time are dedicated to the Linux Kernel. Currently I'm focusing on interrupts on x86_64, but my interests are not restricted to one specific topic, for now.
I also "played" a little bit with kernel modules (ie lantern, a toy packet analyzer) and I've added a new syscall in order read from a task A, the memory of a task B.
Maybe this will be a good chance to...
Goals
- create my first kernel patch
Resources
- https://www.kernel.org/doc/html/latest/process/submitting-patches.html
- https://git-send-email.io/ (mentioned also in the kernel doc)
- https://javiercarrascocruz.github.io/kernel-contributor-1
Achivements
- found while working on a bug, this is the 1st patch: cifs: avoid deadlocks while updating iface [✅ has been merged]
Model checking the BPF verifier by shunghsiyu
Project Description
BPF verifier plays a crucial role in securing the system (though less so now that unprivileged BPF is disabled by default in both upstream and SLES), and bugs in the verifier has lead to privilege escalation vulnerabilities in the past (e.g. CVE-2021-3490).
One way to check whether the verifer has bugs to use model checking (a formal verification technique), in other words, build a abstract model of how the verifier operates, and then see if certain condition can occur (e.g. incorrect calculation during value tracking of registers) by giving both the model and condition to a solver.
For the solver I will be using the Z3 SMT solver to do the checking since it provide a Python binding that's relatively easy to use.
Goal for this Hackweek
Learn how to use the Z3 Python binding (i.e. Z3Py) to build a model of (part of) the BPF verifier, probably the part that's related to value tracking using tristate numbers (aka tnum), and then check that the algorithm work as intended.
Resources
- Formal Methods for the Informal Engineer: Tutorial #1 - The Z3 Theorem Prover and its accompanying notebook is a great introduction into Z3
- Has a section specifically on model checking
- Software Verification and Analysis Using Z3 a great example of using Z3 for model checking
- Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers - existing work that use formal verification to prove that the multiplication helper used for value tracking work as intended
- [PATCH v5 net-next 00/12] bpf: rewrite value tracking in verifier - initial patch set that adds tristate number to the verifier
Linux on Cavium CN23XX cards by tsbogend
Before Cavium switched to ARM64 CPUs they developed quite powerful MIPS based SOCs. The current upstream Linux kernel already supports some Octeon SOCs, but not the latest versions. Goal of this Hack Week project is to use the latest Cavium SDK to update the Linux kernel code to let it running on CN23XX network cards.
Framework laptop integration by nkrapp
Project Description
Although openSUSE does run on the Framework laptops out-of-the-box, there is still room to improve the experience. The ultimate goal is to get openSUSE on the list of community supported distros
Goal for this Hackweek
The goal this year is to at least package all of the soft- and firmware for accessories like the embedded controller, Framework 16 inputmodule and other tools. I already made some progress by packaging the inputmodule control software, but the firmware is still missing
Resources
As I only have a Framework laptop 16 and not a 13 I'm looking for people with hardware that can help me test
Progress:
Update 1:
The project lives under my home for now until I can get an independent project on OBS: Framework Laptop project
Also, the first package is already done, it's the cli for the led-matrix spacer module on the Framework Laptop 16. I am also testing this myself, but any feedback or questions are welcome.
You can test the package on the Framework 16 by adding this repo and installing the package inputmodule-control
Update 2:
I finished packaging the python cli/gui for the inputmodule. It is using a bit of a hack because one of the dependencies (PySimpleGUI) recently switched to a noncommercial license so I cannot ship it. But now you can actually play the games on the led-matrix (the rust package doesn't include controls for the games). I'm also working on the Framework system tools now, which should be more interesting for Framework 13 users.
You can test the package on the Framework 16 by installing python311-framework16_inputmodule and then running "ledmatrixctl" from the command line.
Update 3:
I packaged the framework_tool, a general application for interacting with the system. You can find it some detailed information what it can do here. On my system everything related to the embedded controller functionality doesn't work though, so some help testing and debugging would be appreciated.
Update 4:
Today I finished the qmk interface, which gives you a cli (and gui) to configure your Framework 16 keyboard. Sadly the Python gui is broken upstream, but I added the qmk_hid package with the cli and from my testing it works well.
Final Update:
All the interesting programs are now done, I decided to exclude the firmware for now since upstream also recommends using fwupd to update it. I will hack on more things related to the Framework Laptops in the future so if there are any ideas to improve the experience (or any bugs to report) feel free to message me about it.
As a final summary/help for everyone using a Framework Laptop who wants to use this software:
The source code for all packages can be found in repositories in the Framework organization on Github
All software can be installed from this repo (Tumbleweed)
The available packages are:
framework-inputmodule-control (FW16) - play with the inputmodules on your Framework 16 (b1-display, led-matrix, c1-minimal)
python-framework16_inputmodule (FW16) - same as inputmodule-control but is needed if you want to play and crontrol the built-in games in the led-matrix (call with ledmatrixctl or ledmatrixgui)
framework_tool (FW13 and FW 16) - use to see and configure general things on your framework system. Commands using the embedded controller might not work, it looks like there are some problems with the kernel module used by the EC. Fixing this is out of scope for this hackweek but I am working on it
qmk_hid (FW16) - a cli to configure the FW16 qmk keyboard. Sadly the gui for this is broken upstream so only the cli is usable for now
Capyboard, ESP32 Development Board for Education by emiler
Description
Capyboard is an ESP32 development board built to accept individual custom-made modules. The board is created primarily for use in education, where you want to focus on embedded programming instead of spending time with connecting cables and parts on a breadboard, as you would with Arduino and other such devices. The board is not limited only to education and it can be used to build, for instance, a very powerful internal meteo-station and so on.
I already have one initial prototype ready and tested. The next iteration addresses several issues the first prototype had. I am planning on finishing up the mainboard and one of the modules this week.
This project is also a part of my master's thesis.
Goals
- Finish testing of a new prototype
- Publish source files
- Documentation completion
- Finish writing thesis
Resources
- github.com/realcharmer/capyboard
- github.com/realcharmer/capyboard-starter
- github.com/realcharmer/capyboard-docs
- docs.capyboard.dev
Build a split keyboard from scratch by mpagot
Description
I'm getting older... this summer I experienced an annoying and persistent tingling in one hand and arm. That was the initial motivation to get more interested in ergonomic work gadgets, and from that to split keyboards. And that was the entrance in a rabbit hole.
Which keyboard I like to create:
- Split keyboard for ergonomic (I'm not primary interested in having it portable)
- I have big hands: I like it to fit as much as possible my hands measures
- Columnar stagger keys position
- Not too few keys (at the moment I'm at 24 + 24)
- One row thumb cluster
- No wireless, not to have batteries and for security reason
- CherryMX, or generally speaking no low profile/corne choc
- Hot swap Socket switches
Goals
- Create PCB design for a split keyboard
- Get it produced
- Mount it
- Evaluate FWs
Resources
- Main project repo: Zenga
- ZKM config for a hand wired 4 keys something: nne
- Blog posts opensuse.hackweek.2024
Progress
Day1
Get the existing Ergogen project working on my TW machine Get Kicad as flatpack Go back to the https://flatfootfox.com/ergogen-part3-pcbs/ Join the #ergogen Discord channel and ask for help about the nets
Day2
Redesign the keyboard matrix on Inkscape Implement it in the Ergogen YAML format Create a Kicad PCB file Start routing it Iterate over the matrix arrangement to try to implement it like 2 layer board and ideally with not vias Get some Kicad tutorials
Day3
Get my hand dirty building a 2x2 key matrix --> welcome to nne
Look at ZKM and how to configure it --> https://github.com/michelepagot/zmk-config-nne Get the FW built by github, try to flash it: get matrix scan pulse but no keys to the PC
Get in contact with ceoloide
, an Ergogen maintainer, about net issue.
SUSE Prague claw machine by anstalker
Project Description
The idea is to build a claw machine similar to e.g. this one:
Why? Well, it could be a lot of fun!
But also it's a great way to dispense SUSE and openSUSE merch like little Geekos at events like conferences, career fairs and open house events.
Goal for this Hackweek
Build an arcade claw machine.
Resources
In French, an article about why you always lose in claw machine games:
We're looking for handy/crafty people in the Prague office:
- woodworking XP or equipment
- arduino/raspi embedded programming knowledge
- Anthony can find a budget for going to GM and buying servos and such ;)