Building on top of Rouslan Dimitrov's Microcontroller Class D Amplifier, I developed the idea to feed the power amplifier with PCM data directly. Rouslan does some dithering and noise shaping, but I'm convinced that proper interpolation would sound better. The ATtiny is too slow to do even cubic interpolation so I'll move that into the host.

The result should be an ALSA driver, that does upsampling of 44.1 or 48 kHz to about 240 kHz (the Class-D PWM frequency) and sends it over preferably, but not limited to, SPI towards the AVR, which will drive the power FETs with its PWM outputs. This can give any (embedded) linux system the right audio "punch" with a fairly short BOM.

Looking for hackers with the skills:

alsa arm arduino kernel mips hardware

This project is part of:

Hack Week 10

Activity

  • about 12 years ago: duwe added keyword "hardware" to this project.
  • about 12 years ago: duwe added keyword "mips" to this project.
  • about 12 years ago: duwe added keyword "kernel" to this project.
  • about 12 years ago: cyberiad liked this project.
  • about 12 years ago: duwe liked this project.
  • about 12 years ago: duwe added keyword "alsa" to this project.
  • about 12 years ago: duwe added keyword "arm" to this project.
  • about 12 years ago: duwe added keyword "arduino" to this project.
  • about 12 years ago: duwe started this project.
  • about 12 years ago: duwe originated this project.

  • Comments

    Be the first to comment!

    Similar Projects

    Play with esp32 to create domotics stuff by aginies

    Description

    Play with ESP32 board and multiple small peripherals

    https://github.com/aginies/domotique

    Goals

    • Finish the pool project
    • add support of NFC auth in the door project
    • improve the doc
    • project to manage solar panel (router)

    Resources

    esp32 home


    early stage kdump support by mbrugger

    Project Description

    When we experience a early boot crash, we are not able to analyze the kernel dump, as user-space wasn't able to load the crash system. The idea is to make the crash system compiled into the host kernel (think of initramfs) so that we can create a kernel dump really early in the boot process.

    Goal for the Hackweeks

    1. Investigate if this is possible and the implications it would have (done in HW21)
    2. Hack up a PoC (done in HW22 and HW23)
    3. Prepare RFC series (giving it's only one week, we are entering wishful thinking territory here).

    update HW23

    • I was able to include the crash kernel into the kernel Image.
    • I'll need to find a way to load that from init/main.c:start_kernel() probably after kcsan_init()
    • I workaround for a smoke test was to hack kexec_file_load() systemcall which has two problems:
      1. My initramfs in the porduction kernel does not have a new enough kexec version, that's not a blocker but where the week ended
      2. As the crash kernel is part of init.data it will be already stale once I can call kexec_file_load() from user-space.

    The solution is probably to rewrite the POC so that the invocation can be done from init.text (that's my theory) but I'm not sure if I can reuse the kexec infrastructure in the kernel from there, which I rely on heavily.

    update HW24

    • Day1
      • rebased on v6.12 with no problems others then me breaking the config
      • setting up a new compilation and qemu/virtme env
      • getting desperate as nothing works that used to work
    • Day 2
      • getting to call the invocation of loading the early kernel from __init after kcsan_init()
    • Day 3

      • fix problem of memdup not being able to alloc so much memory... use 64K page sizes for now
      • code refactoring
      • I'm now able to load the crash kernel
      • When using virtme I can boot into the crash kernel, also it doesn't boot completely (major milestone!), crash in elfcorehdr_read_notes()
    • Day 4

      • crash systems crashes (no pun intended) in copy_old_mempage() link; will need to understand elfcorehdr...
      • call path vmcore_init() -> parse_crash_elf_headers() -> elfcorehdr_read() -> read_from_oldmem() -> copy_oldmem_page() -> copy_to_iter()
    • Day 5

      • hacking arch/arm64/kernel/crash_dump.c:copy_old_mempage() to see if crash system really starts. It does.
      • fun fact: retested with more reserved memory and with UEFI FW, host kernel crashes in init but directly starts the crash kernel, so it works (somehow) \o/
    • TODOs

      • fix elfcorehdr so that we actually can make use of all this...
      • test where in the boot __init() chain we can/should call kexec_early_dump()


    pudc - A PID 1 process that barks to the internet by mssola

    Description

    As a fun exercise in order to dig deeper into the Linux kernel, its interfaces, the RISC-V architecture, and all the dragons in between; I'm building a blog site cooked like this:

    • The backend is written in a mixture of C and RISC-V assembly.
    • The backend is actually PID1 (for real, not within a container).
    • We poll and parse incoming HTTP requests ourselves.
    • The frontend is a mere HTML page with htmx.

    The project is meant to be Linux-specific, so I'm going to use io_uring, pidfs, namespaces, and Linux-specific features in order to drive all of this.

    I'm open for suggestions and so on, but this is meant to be a solo project, as this is more of a learning exercise for me than anything else.

    Goals

    • Have a better understanding of different Linux features from user space down to the kernel internals.
    • Most importantly: have fun.

    Resources


    Backfire TV - Take back control of your Firestick by andreabenini

    Take Back Control of Your Amazon Firestick.
    Tired of Ads, a cluttered launcher, and buttons you can't change? BackFireTV is a project to liberate your Firestick from Amazon's walled garden and make it truly yours. They call it the firestick. To fight fire with fire, you need a backfire.

    That's the soul of BackFireTV. To truly liberate it and return back to its core capabilities this project uses a linux script, one Android app and ADB access against Amazon's restrictive policies. We leverage these internal tools to create a "backfire" against the incessant ads and locked ecosystem, transforming your Firestick back into the useful, customizable device it was always meant to be.

    Goals

    I'm still defining it as a side project and something I'll surely do in the upcoming days with hw I already have. btw I'd like to register it in advance in order to work on it. I already have a somehow working concept I'll redefine later during the week


    Capyboard, ESP32 Development Board for Education by emiler

    Capyboard is an ESP32 development board built to accept individual custom-made modules. The board is created primarily for use in education, where you want to focus on embedded programming instead of spending time with connecting cables and parts on a breadboard, as you would with Arduino and other such devices. The board is not limited only to education and it can be used to build, for instance, a very powerful internal meteo-station and so on.

    Hack Week 25

    My plan is to create a new revision of the board with updated dimensions and possibly even use a new ESP32 with Zigbee/Thread support. I also want to create an extensive library of example projects and expand the documentation. It would be nice to also design additional modules, such multiplexer or an environment module.

    Goals

    • Implement changes to a new board revision
    • Design additional modules
    • Expand documentation and examples
    • Migrate documentation backend from MkDocs to Zensical

    Hack Week 24

    I created a new motherboard revision after testing my previous prototype, as well as a light module. This project was also a part of my master's thesis, which was defended successfully.

    Goals

    • Finish testing of a new prototype
    • Publish source files
    • Documentation completion
    • Finish writing thesis