
Zero-Trust-Security
in production and

delivery

How to implement it via a
contract on the blockchain

The Problem

We have many single point of failures leading to a compromised system.

● Every OBS admin can inject not wanted binaries
● Every content provider can block updates. Including the used cloud provider.

(same is true for any mirror or container registry)
● Even older content could be provided, since it is still valid signed

(known vulnerabilities can be used to attack the consumer afterwards)
● There is no usable way for a customer to verify that he is on a current state when the attack

happens in the delivery chain.
● An already reported grave security issue may not reach the customer and he can not easily

check on his system the absence.
● Centralized services like sigstore are just moving the problem, but are not solving it.
● A targeted attack to single customer, where only this user gets manipulated content is unlikely

to be noticed by anyone.

3

The Current Setup
A cascade with many single critical places in a row …

Source product productproduct

OBS is producing and signing the product
CDN /

registry
Customer Mirror

Customer verifies
against his mirror
only

4

The Current Setup
A cascade with many single critical places in a row …

Source product productproduct

OBS is producing and signing the product
CDN /

registry
Customer Mirror

Customer verifies
against his mirror
only

Each step provides multiple risks for manipulation!
Attackers might be system administrators, cloud hoster,
network providers, SSL CA authorities, …

5

The Solution
Verification happens via the blockchain as second channel without a single attack point…

Source product productproduct

OBS is producing and signing the product
CDN /

registry
Customer Mirror

Contract in the blockchain

Attestator verifies via
a re-build

Security Team marks
old code as unsecure

The First Implementation

EVM contract

● Defines the different roles
● Offers to store product registrations on the blockchain
● Allows to register an executed rebuild with binary identical result
● Allows to register a grave security issue for a build
● Can proof current state of provided distribution

Slim CLI tool to check the local zypper repository cache against the contract:

● No need to buy any crypto currency or to run a blockchain node for the user!

Demo
Using deployed contract on Ethereum Holesky test network

zypper ar https://download.opensuse.org/repositories/home:/adrianSuSE:/suse-distro-blockchain/openSUSE_Factory
zypper ar https://download.opensuse.org/repositories/home:/adrianSuSE:/suse-distro-blockchain-example/openSUSE_Factory sdb-example
zypper ref
zypper in suse-distro-check

suse-distro-check sdb-example
Reaching out to https://ethereum-holesky-rpc.publicnode.com
Used chain ID: 17000, @block: 2798553, contract: 0x6135d6ec831bD648852Ea10a3f162d353286D4a5
Reading /var/cache/zypp/raw/suse-distro-blockchain-example/repodata/repomd.xml
Selected product: example-1
Used source SHA-256: 8a645f5782b507202c75ee7fbeaf7bb21d34dd5c2eda4118bb76a31a39226e30
Build Type: rpm-md
No critical security issues reported
Same rebuild not (yet) attestated
The contract proofed your repository cache as current state :)

(exit code 0, being happy :)

Small things missing…

Check Tool:

● Integrate in “zypper ref” via plugin
● Integrate into podman
● Find a generic way for images/appliances

Polish up admin tool:

● Register Builds
● Add attestations
● Set security issue flag

Out of scope for now:

● Implementing distributed proofs and signatures to reach the referenced source code

Resources

● Git repository https://github.com/adrianschroeter/suse-distro-blockchain

● OBS project
https://build.opensuse.org/project/show/home:adrianSuSE:suse-distro-blockchain

● Deployed Contract on Ethereum Holesky test network:

https://holesky.beaconcha.in/address/0x6135d6ec831bd648852ea10a3f162d353
286d4a5

